Articles | Volume 4, issue 3
https://doi.org/10.5194/esurf-4-655-2016
https://doi.org/10.5194/esurf-4-655-2016
Research article
 | 
10 Aug 2016
Research article |  | 10 Aug 2016

The CAIRN method: automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations

Simon Marius Mudd, Marie-Alice Harel, Martin D. Hurst, Stuart W. D. Grieve, and Shasta M. Marrero

Related authors

Downstream rounding rate of pebbles in the Himalaya
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024,https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
Continuous measurements of valley floor width in mountainous landscapes
Fiona J. Clubb, Eliot F. Weir, and Simon M. Mudd
Earth Surf. Dynam., 10, 437–456, https://doi.org/10.5194/esurf-10-437-2022,https://doi.org/10.5194/esurf-10-437-2022, 2022
Short summary
Arable soil formation and erosion: a hillslope-based cosmogenic nuclide study in the United Kingdom
Daniel L. Evans, John N. Quinton, Andrew M. Tye, Ángel Rodés, Jessica A. C. Davies, Simon M. Mudd, and Timothy A. Quine
SOIL, 5, 253–263, https://doi.org/10.5194/soil-5-253-2019,https://doi.org/10.5194/soil-5-253-2019, 2019
Short summary
A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles
Boris Gailleton, Simon M. Mudd, Fiona J. Clubb, Daniel Peifer, and Martin D. Hurst
Earth Surf. Dynam., 7, 211–230, https://doi.org/10.5194/esurf-7-211-2019,https://doi.org/10.5194/esurf-7-211-2019, 2019
Short summary
OCTOPUS: an open cosmogenic isotope and luminescence database
Alexandru T. Codilean, Henry Munack, Timothy J. Cohen, Wanchese M. Saktura, Andrew Gray, and Simon M. Mudd
Earth Syst. Sci. Data, 10, 2123–2139, https://doi.org/10.5194/essd-10-2123-2018,https://doi.org/10.5194/essd-10-2123-2018, 2018
Short summary

Related subject area

Cross-cutting themes: establish timing and rates of Earth surface processes by applying geochronology
Cosmogenic nuclide-derived downcutting rates of canyons within large limestone plateaus of southern Massif Central (France) reveal a different regional speleogenesis of karst networks
Oswald Malcles, Philippe Vernant, David Fink, Gaël Cazes, Jean-François Ritz, Toshiyuki Fujioka, and Jean Chéry
Earth Surf. Dynam., 12, 679–690, https://doi.org/10.5194/esurf-12-679-2024,https://doi.org/10.5194/esurf-12-679-2024, 2024
Short summary
An efficient approach for inverting rock exhumation from thermochronologic age–elevation relationship
Yuntao Tian, Lili Pan, Guihong Zhang, and Xinbo Yao
Earth Surf. Dynam., 12, 477–492, https://doi.org/10.5194/esurf-12-477-2024,https://doi.org/10.5194/esurf-12-477-2024, 2024
Short summary
Bias and error in modelling thermochronometric data: resolving a potential increase in Plio-Pleistocene erosion rate
Sean D. Willett, Frédéric Herman, Matthew Fox, Nadja Stalder, Todd A. Ehlers, Ruohong Jiao, and Rong Yang
Earth Surf. Dynam., 9, 1153–1221, https://doi.org/10.5194/esurf-9-1153-2021,https://doi.org/10.5194/esurf-9-1153-2021, 2021
Short summary
Evaluating optically stimulated luminescence rock surface exposure dating as a novel approach for reconstructing coastal boulder movement on decadal to centennial timescales
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021,https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Modelling the effects of ice transport and sediment sources on the form of detrital thermochronological age probability distributions from glacial settings
Maxime Bernard, Philippe Steer, Kerry Gallagher, and David Lundbek Egholm
Earth Surf. Dynam., 8, 931–953, https://doi.org/10.5194/esurf-8-931-2020,https://doi.org/10.5194/esurf-8-931-2020, 2020
Short summary

Cited articles

Abbühl, L. M., Norton, K. P., Schlunegger, F., Kracht, O., Aldahan, A., and Possnert, G.: El Niño forcing on 10Be-based surface denudation rates in the northwestern Peruvian Andes?, Geomorphology, 123, 257–268, https://doi.org/10.1016/j.geomorph.2010.07.017, 2010.
Argento, D. C., Stone, J. O., Reedy, R. C., and O'Brien, K.: Physics-based modeling of cosmogenic nuclides part II – Key aspects of in-situ cosmogenic nuclide production, Quat. Geochronol., 26, 44–55, https://doi.org/10.1016/j.quageo.2014.09.005, 2015.
Balco, G.: Simple computer code for estimating cosmic-ray shielding by oddly shaped objects, Quat. Geochronol., 22, 175–182, https://doi.org/10.1016/j.quageo.2013.12.002, 2014.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Balco, G., Soreghan, G. S., Sweet, D. E., Marra, K. R., and Bierman, P. R.: Cosmogenic-nuclide burial ages for Pleistocene sedimentary fill in Unaweep Canyon, Colorado, USA, Quat. Geochronol., 18, 149–157, https://doi.org/10.1016/j.quageo.2013.02.002, 2013.
Download
Short summary
Cosmogenic nuclide concentrations are widely used to calculate catchment-averaged denudation rates. Despite their widespread use, there is currently no open source method for calculating such rates, and the methods used to calculate catchment-averaged denudation rates vary widely between studies. Here we present an automated, open-source method for calculating basin averaged denudation rates, which may be used as a stand-alone calculator or as a front end to popular online calculators.