Articles | Volume 9, issue 3
https://doi.org/10.5194/esurf-9-673-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-673-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Precise water level measurements using low-cost GNSS antenna arrays
David J. Purnell
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montréal, Quebec, H3A 0E8 Canada
Natalya Gomez
Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montréal, Quebec, H3A 0E8 Canada
William Minarik
Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montréal, Quebec, H3A 0E8 Canada
David Porter
Lamont‐Doherty Earth Observatory, Columbia University, New York, NY, USA
Gregory Langston
Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montréal, Quebec, H3A 0E8 Canada
Related authors
No articles found.
Natasha Valencic, Linda Pan, Konstantin Latychev, Natalya Gomez, Evelyn Powell, and Jerry X. Mitrovica
The Cryosphere, 18, 2969–2978, https://doi.org/10.5194/tc-18-2969-2024, https://doi.org/10.5194/tc-18-2969-2024, 2024
Short summary
Short summary
We quantify the effect of ongoing Antarctic bedrock uplift due to Ice Age or modern ice mass changes on estimates of ice thickness changes obtained from satellite-based ice height measurements. We find that variations in the Ice Age signal introduce an uncertainty in estimates of total Antarctic ice change of up to ~10%. Moreover, the usual assumption that the mapping between modern ice height and thickness changes is uniform systematically underestimates net Antarctic ice volume changes.
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023, https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Short summary
We use advanced statistical techniques and a simple ice-sheet model to produce an ensemble of plausible 3D shapes of the ice sheet that once stretched across northern Europe during the previous glacial maximum (140,000 years ago). This new reconstruction, equivalent in volume to 48 ± 8 m of global mean sea-level rise, will improve the interpretation of high sea levels recorded from the Last Interglacial period (120 000 years ago) that provide a useful perspective on the future.
Benjamin E. Smith, Brooke Medley, Xavier Fettweis, Tyler Sutterley, Patrick Alexander, David Porter, and Marco Tedesco
The Cryosphere, 17, 789–808, https://doi.org/10.5194/tc-17-789-2023, https://doi.org/10.5194/tc-17-789-2023, 2023
Short summary
Short summary
We use repeated satellite measurements of the height of the Greenland ice sheet to learn about how three computational models of snowfall, melt, and snow compaction represent actual changes in the ice sheet. We find that the models do a good job of estimating how the parts of the ice sheet near the coast have changed but that two of the models have trouble representing surface melt for the highest part of the ice sheet. This work provides suggestions for how to better model snowmelt.
Jeannette Xiu Wen Wan, Natalya Gomez, Konstantin Latychev, and Holly Kyeore Han
The Cryosphere, 16, 2203–2223, https://doi.org/10.5194/tc-16-2203-2022, https://doi.org/10.5194/tc-16-2203-2022, 2022
Short summary
Short summary
This paper assesses the grid resolution necessary to accurately model the Earth deformation and sea-level change associated with West Antarctic ice mass changes. We find that results converge at higher resolutions, and errors of less than 5 % can be achieved with a 7.5 km grid. Our results also indicate that error due to grid resolution is negligible compared to the effect of neglecting viscous deformation in low-viscosity regions.
Holly Kyeore Han, Natalya Gomez, and Jeannette Xiu Wen Wan
Geosci. Model Dev., 15, 1355–1373, https://doi.org/10.5194/gmd-15-1355-2022, https://doi.org/10.5194/gmd-15-1355-2022, 2022
Short summary
Short summary
Interactions between ice sheets, sea level and the solid Earth occur over a range of timescales from years to tens of thousands of years. This requires coupled ice-sheet–sea-level models to exchange information frequently, leading to a quadratic increase in computation time with the number of model timesteps. We present a new sea-level model algorithm that allows coupled models to improve the computational feasibility and precisely capture short-term interactions within longer simulations.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Related subject area
Physical: Geophysics
3D shear wave velocity imaging of the subsurface structure of granite rocks in the arid climate of Pan de Azúcar, Chile, revealed by Bayesian inversion of HVSR curves
Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate
Subaerial and subglacial seismic characteristics of the largest measured jökulhlaup from the eastern Skaftá cauldron, Iceland
Short communication: Potential of Sentinel-1 interferometric synthetic aperture radar (InSAR) and offset tracking in monitoring post-cyclonic landslide activities on Réunion
Automated classification of seismic signals recorded on the Åknes rock slope, Western Norway, using a convolutional neural network
Short communication: A tool for determining multiscale bedform characteristics from bed elevation data
Probabilistic estimation of depth-resolved profiles of soil thermal diffusivity from temperature time series
Vibration of natural rock arches and towers excited by helicopter-sourced infrasound
An update on techniques to assess normal-mode behavior of rock arches by ambient vibrations
Locating rock slope failures along highways and understanding their physical processes using seismic signals
Reconstructing the dynamics of the highly similar May 2016 and June 2019 Iliamna Volcano (Alaska) ice–rock avalanches from seismoacoustic data
Seismo-acoustic energy partitioning of a powder snow avalanche
Comment on “Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: precursor, motion and aftermath” by Schöpa et al. (2018)
Seismic location and tracking of snow avalanches and slush flows on Mt. Fuji, Japan
Acoustic wave propagation in rivers: an experimental study
Automatic detection of avalanches combining array classification and localization
Potentials and pitfalls of permafrost active layer monitoring using the HVSR method: a case study in Svalbard
Short Communication: Monitoring rockfalls with the Raspberry Shake
Towards a standard typology of endogenous landslide seismic sources
Seismic detection of rockslides at regional scale: examples from the Eastern Alps and feasibility of kurtosis-based event location
Characterizing the complexity of microseismic signals at slow-moving clay-rich debris slides: the Super-Sauze (southeastern France) and Pechgraben (Upper Austria) case studies
Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions
Single-block rockfall dynamics inferred from seismic signal analysis
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763, https://doi.org/10.5194/esurf-12-747-2024, https://doi.org/10.5194/esurf-12-747-2024, 2024
Short summary
Short summary
This study investigates subsurface weathering zones, revealing their structure through shear wave velocity variations. The research focuses on the arid climate of Pan de Azúcar National Park, Chile, using seismic ambient noise recordings to construct pseudo-3D models. The resulting models show the subsurface structure, including granite gradients and mafic dike intrusions. Comparison with other sites emphasizes the intricate relationship between climate, geology, and weathering depth.
Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, Emmanuel Wyser, Ombeline Brenguier, Franck Bourrier, Renaud Toussaint, Jean-Philippe Malet, and Michel Jaboyedoff
Earth Surf. Dynam., 12, 641–656, https://doi.org/10.5194/esurf-12-641-2024, https://doi.org/10.5194/esurf-12-641-2024, 2024
Short summary
Short summary
Natural disasters such as landslides and rockfalls are mostly difficult to study because of the impossibility of making in situ measurements due to their destructive nature and spontaneous occurrence. Seismology is able to record the occurrence of such events from a distance and in real time. In this study, we show that, by using a machine learning approach, the mass and velocity of rockfalls can be estimated from the seismic signal they generate.
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023, https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short summary
Floods draining beneath an ice cap are hazardous events that generate six different short- or long-lasting types of seismic signals. We use these signals to see the collapse of the ice once the water has left the lake, the propagation of the flood front to the terminus, hydrothermal explosions and boiling in the bedrock beneath the drained lake, and increased water flow at rapids in the glacial river. We can thus track the flood and assess the associated hazards better in future flooding events.
Marcello de Michele, Daniel Raucoules, Claire Rault, Bertrand Aunay, and Michael Foumelis
Earth Surf. Dynam., 11, 451–460, https://doi.org/10.5194/esurf-11-451-2023, https://doi.org/10.5194/esurf-11-451-2023, 2023
Short summary
Short summary
Landslide processes are causes of major concern to population and infrastructures on Réunion. In this study, we used data from the Copernicus Sentinel-1 satellite to map ground motion in Cirque de Salazie. We concentrate on the cyclonic season 2017–2018. Our results show ground motion in the Hell-Bourg, Ilet à Vidot,
Grand-Ilet, Camp Pierrot, and Le Bélier landslides. Moreover, we show an unknown pattern of ground motion situated in a non-instrumented, uninhabited area on the ground.
Nadège Langet and Fred Marcus John Silverberg
Earth Surf. Dynam., 11, 89–115, https://doi.org/10.5194/esurf-11-89-2023, https://doi.org/10.5194/esurf-11-89-2023, 2023
Short summary
Short summary
Microseismic events recorded on the Åknes rock slope in Norway during the past 15 years are automatically divided into eight classes. The results are analysed and compared to meteorological data, showing a strong increase in the microseismic activity in spring mainly due to freezing and thawing processes.
Judith Y. Zomer, Suleyman Naqshband, and Antonius J. F. Hoitink
Earth Surf. Dynam., 10, 865–874, https://doi.org/10.5194/esurf-10-865-2022, https://doi.org/10.5194/esurf-10-865-2022, 2022
Short summary
Short summary
Riverbeds are often composed of different scales of dunes, whose sizes and shapes are highly variable over time and space. Characterization of these dunes is important in many research studies focused on fluvial processes. A tool is presented here that aims to identify different scales of dunes from riverbed elevation maps. A first step is to separate two scales of bedforms without smoothing steep slopes of the larger dunes. In a second step, dunes are identified and properties are computed.
Carlotta Brunetti, John Lamb, Stijn Wielandt, Sebastian Uhlemann, Ian Shirley, Patrick McClure, and Baptiste Dafflon
Earth Surf. Dynam., 10, 687–704, https://doi.org/10.5194/esurf-10-687-2022, https://doi.org/10.5194/esurf-10-687-2022, 2022
Short summary
Short summary
This paper proposes a method to estimate thermal diffusivity and its uncertainty over time, at numerous locations and at an unprecedented vertical spatial resolution from soil temperature time series. We validate and apply this method to synthetic and field case studies. The improved quantification of soil thermal properties is a cornerstone for advancing the indirect estimation of the fraction of soil components needed to predict subsurface storage and fluxes of water, carbon, and nutrients.
Riley Finnegan, Jeffrey R. Moore, and Paul R. Geimer
Earth Surf. Dynam., 9, 1459–1479, https://doi.org/10.5194/esurf-9-1459-2021, https://doi.org/10.5194/esurf-9-1459-2021, 2021
Short summary
Short summary
We performed controlled helicopter flights near seven rock arches and towers in Utah, USA, and recorded how their natural vibrations changed as the helicopter performed different maneuvers. We found that arches and towers vibrate up to 1000 times faster during these flights compared to time periods just before the helicopter's approach. Our study provides data that can be used to predict long-term damage to culturally significant rock features from sustained helicopter flights over time.
Mauro Häusler, Paul Richmond Geimer, Riley Finnegan, Donat Fäh, and Jeffrey Ralston Moore
Earth Surf. Dynam., 9, 1441–1457, https://doi.org/10.5194/esurf-9-1441-2021, https://doi.org/10.5194/esurf-9-1441-2021, 2021
Short summary
Short summary
Natural rock arches are valued landmarks worldwide. As ongoing erosion can lead to rockfall and collapse, it is important to monitor the structural integrity of these landforms. One suitable technique involves measurements of resonance, produced when mainly natural sources, such as wind, vibrate the spans. Here we explore the use of two advanced processing techniques to accurately measure the resonant frequencies, damping ratios, and deflection patterns of several rock arches in Utah, USA.
Jui-Ming Chang, Wei-An Chao, Hongey Chen, Yu-Ting Kuo, and Che-Ming Yang
Earth Surf. Dynam., 9, 505–517, https://doi.org/10.5194/esurf-9-505-2021, https://doi.org/10.5194/esurf-9-505-2021, 2021
Short summary
Short summary
Seismic techniques applied in rock slope failure research do not provide rapid notifications, as for earthquakes, due to the lack of connections between seismic signals and events. We studied 10 known events in Taiwan and developed a GeoLoc scheme to locate rock slope failures, estimate the event volume, and understand their physical process using available videos. With real-time seismic data transmission, a rapid report can be created for the public within several minutes of the event.
Liam Toney, David Fee, Kate E. Allstadt, Matthew M. Haney, and Robin S. Matoza
Earth Surf. Dynam., 9, 271–293, https://doi.org/10.5194/esurf-9-271-2021, https://doi.org/10.5194/esurf-9-271-2021, 2021
Short summary
Short summary
Large avalanches composed of ice and rock are a serious hazard to mountain communities and backcountry travellers. These processes shake the Earth and disturb the atmosphere, generating seismic waves and sound waves which can travel for hundreds of kilometers. In this study, we use the seismic waves and sound waves produced by two massive avalanches on a volcano in Alaska to reconstruct how the avalanches failed. Our method may assist with rapid emergency response to these global hazards.
Emanuele Marchetti, Alec van Herwijnen, Marc Christen, Maria Cristina Silengo, and Giulia Barfucci
Earth Surf. Dynam., 8, 399–411, https://doi.org/10.5194/esurf-8-399-2020, https://doi.org/10.5194/esurf-8-399-2020, 2020
Short summary
Short summary
We present infrasonic and seismic array data of a powder snow avalanche, that was released on 5 February 2016, in the Dischma valley nearby Davos, Switzerland. Combining information derived from both arrays, we show how infrasound and seismic energy are radiated from different sources acting along the path. Moreover, infrasound transmits to the ground and affects the recorded seismic signal. Results highlight the benefits of combined seismo-acoustic array analyses for monitoring and research.
Tómas Jóhannesson, Jón Kristinn Helgason, and Sigríður Sif Gylfadóttir
Earth Surf. Dynam., 8, 173–175, https://doi.org/10.5194/esurf-8-173-2020, https://doi.org/10.5194/esurf-8-173-2020, 2020
Cristina Pérez-Guillén, Kae Tsunematsu, Kouichi Nishimura, and Dieter Issler
Earth Surf. Dynam., 7, 989–1007, https://doi.org/10.5194/esurf-7-989-2019, https://doi.org/10.5194/esurf-7-989-2019, 2019
Short summary
Short summary
Avalanches and slush flows from Mt. Fuji are a major natural hazard as they may attain run-out distances of up to 4 km and destroy parts of the forest and infrastructure. We located and tracked them for the first time using seismic data. Numerical simulations were conducted to assess the precision of the seismic tracking. We also inferred dynamical properties characterizing these hazardous mass movements. This information is indispensable for assessing avalanche risk in the Mt. Fuji region.
Thomas Geay, Ludovic Michel, Sébastien Zanker, and James Robert Rigby
Earth Surf. Dynam., 7, 537–548, https://doi.org/10.5194/esurf-7-537-2019, https://doi.org/10.5194/esurf-7-537-2019, 2019
Short summary
Short summary
This research has been conducted to develop the use of passive acoustic monitoring (PAM) for bedload monitoring in rivers. Monitored bedload acoustic signals depend on bedload characteristics (e.g., grain size distribution, fluxes) but are also affected by the environment in which the acoustic waves are propagated. This study focuses on the determination of propagation effects in rivers. An experimental approach has been conducted in several streams to estimate acoustic propagation laws.
Matthias Heck, Alec van Herwijnen, Conny Hammer, Manuel Hobiger, Jürg Schweizer, and Donat Fäh
Earth Surf. Dynam., 7, 491–503, https://doi.org/10.5194/esurf-7-491-2019, https://doi.org/10.5194/esurf-7-491-2019, 2019
Short summary
Short summary
We used continuous seismic data from two small aperture geophone arrays deployed in the region above Davos in the eastern Swiss Alps to develop a machine learning workflow to automatically identify signals generated by snow avalanches. Our results suggest that the method presented could be used to identify major avalanche periods and highlight the importance of array processing techniques for the automatic classification of avalanches in seismic data.
Andreas Köhler and Christian Weidle
Earth Surf. Dynam., 7, 1–16, https://doi.org/10.5194/esurf-7-1-2019, https://doi.org/10.5194/esurf-7-1-2019, 2019
Short summary
Short summary
The uppermost part of permanently frozen ground can thaw during summer and refreeze during winter. We use a method based on naturally generated seismic waves to continuously monitor these changes close to the research settlement of Ny-Ålesund in Svalbard between April and August 2016. Our results reveal some potential pitfalls when interpreting temporal variations in the data. However, we show that a careful data analysis makes this method a very useful tool for long-term permafrost monitoring.
Andrea Manconi, Velio Coviello, Maud Galletti, and Reto Seifert
Earth Surf. Dynam., 6, 1219–1227, https://doi.org/10.5194/esurf-6-1219-2018, https://doi.org/10.5194/esurf-6-1219-2018, 2018
Short summary
Short summary
We evaluated the performance of the low-cost seismic Raspberry Shake (RS) sensors to identify and monitor rockfall activity in alpine environments. The sensors have been tested for a 1-year period in a high alpine environment, recording numerous rock failure events as well as local and distant earthquakes. This study demonstrates that the RS instruments provide a good option to build low seismic monitoring networks to monitor different kinds of geophysical phenomena.
Floriane Provost, Jean-Philippe Malet, Clément Hibert, Agnès Helmstetter, Mathilde Radiguet, David Amitrano, Nadège Langet, Eric Larose, Clàudia Abancó, Marcel Hürlimann, Thomas Lebourg, Clara Levy, Gaëlle Le Roy, Patrice Ulrich, Maurin Vidal, and Benjamin Vial
Earth Surf. Dynam., 6, 1059–1088, https://doi.org/10.5194/esurf-6-1059-2018, https://doi.org/10.5194/esurf-6-1059-2018, 2018
Short summary
Short summary
Seismic sources generated by the deformation of unstable slopes are diverse in terms of signal properties and mechanisms. Standardized catalogues of landslide endogenous seismicity can help understanding the physical processes controlling slope dynamics. We propose a generic typology of seismic sources based on the analysis of signals recorded at various instrumented slopes. We demonstrate that the seismic signals present similar features at different sites and discuss their mechanical sources.
Florian Fuchs, Wolfgang Lenhardt, Götz Bokelmann, and the AlpArray Working Group
Earth Surf. Dynam., 6, 955–970, https://doi.org/10.5194/esurf-6-955-2018, https://doi.org/10.5194/esurf-6-955-2018, 2018
Short summary
Short summary
The work demonstrates how seismic networks installed in the Alps can be used for country-wide real-time monitoring of rockslide activity. We suggest simple methods that allow us to detect, locate, and characterize rockslides using the seismic signals they generate. We developed an automatic procedure to locate rockslides with kilometer accuracy over hundreds of kilometers of distance. Our findings highlight how seismic networks can help us to understand the triggering of rockslides.
Naomi Vouillamoz, Sabrina Rothmund, and Manfred Joswig
Earth Surf. Dynam., 6, 525–550, https://doi.org/10.5194/esurf-6-525-2018, https://doi.org/10.5194/esurf-6-525-2018, 2018
Short summary
Short summary
Seismic monitoring of active landslides enables the detection of microseismic signals generated by slope activity. We propose a classification of
microseismic signals observed at two active clay-rich debris slides and a simple method to constrain their source origin and their size
based on their signal amplitudes. A better understanding of landslide-induced microseismicity is crucial for the development of early warning systems
based on landslide-induced microseismic signal precursors.
Pippa L. Whitehouse
Earth Surf. Dynam., 6, 401–429, https://doi.org/10.5194/esurf-6-401-2018, https://doi.org/10.5194/esurf-6-401-2018, 2018
Short summary
Short summary
This article is a contribution to a special issue on
Two centuries of modelling across scales. It describes the historical observations, evolving hypotheses, and early calculations that led to the development of the field of glacial isostatic sdjustment (GIA) modelling, which seeks to understand feedbacks between ice-sheet change, sea-level change, and solid Earth deformation. Recent and future advances are discussed. Future progress will likely involve an interdisciplinary approach.
Clément Hibert, Jean-Philippe Malet, Franck Bourrier, Floriane Provost, Frédéric Berger, Pierrick Bornemann, Pascal Tardif, and Eric Mermin
Earth Surf. Dynam., 5, 283–292, https://doi.org/10.5194/esurf-5-283-2017, https://doi.org/10.5194/esurf-5-283-2017, 2017
Cited articles
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O.,
Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E.,
Weyhenmeyer, G. A., and Winder, M.: Lakes as sentinels of climate change,
Limnol. Oceanogr., 54, 2283–2297,
https://doi.org/10.4319/lo.2009.54.6_part_2.2283, 2009. a
Baumann, T. M., Polyakov, I. V., Padman, L., Danielson, S., Fer, I., Janout,
M., Williams, W., and Pnyushkov, A. V.: Arctic tidal current atlas,
Scientific Data, 7, 275, https://doi.org/10.1038/s41597-020-00578-z, 2020. a
Beckmann, P. and Spizzichino, A.: The scattering of electromagnetic waves
from rough surfaces, Artech House, Norwood, MA, USA, 1987. a
Dullaart, J. C. M., Muis, S., Bloemendaal, N., and Aerts, J. C. J. H.:
Advancing global storm surge modelling using the new ERA5 climate reanalysis,
Clim. Dynam., 54, 1007–1021, https://doi.org/10.1007/s00382-019-05044-0, 2020. a
Fagundes, M. A. R., Mendonça-Tinti, I., Iescheck, A. L., Akos, D. M., and
Geremia-Nievinski, F.: An open-source low-cost sensor for SNR-based GNSS
reflectometry: design and long-term validation towards sea-level altimetry,
GPS Solutions, 25, 73, https://doi.org/10.1007/s10291-021-01087-1, 2021. a, b, c
Geremia-Nievinski, F., Hobiger, T., Haas, R., Liu, W., Strandberg, J., Tabibi,
S., Vey, S., Wickert, J., and Williams, S.: SNR-based GNSS reflectometry for
coastal sea-level altimetry: results from the first IAG inter-comparison
campaign, J. Geodesy, 94, 70, https://doi.org/10.1007/s00190-020-01387-3, 2020. a
Goudie, A. S.: Global warming and fluvial geomorphology, Geomorphology, 79, 384–394, https://doi.org/10.1016/j.geomorph.2006.06.023, 2006. a
Gómez-Enri, J., Vignudelli, S., Cipollini, P., Coca, J., and González, C.:
Validation of CryoSat-2 SIRAL sea level data in the eastern continental shelf
of the Gulf of Cadiz (Spain), Adv. Space Res., 62, 1405–1420,
https://doi.org/10.1016/j.asr.2017.10.042, 2018. a
Khan, S. A., Bjørk, A. A., Bamber, J. L., Morlighem, M., Bevis, M.,
Kjær, K. H., Mouginot, J., Løkkegaard, A., Holland, D. M., Aschwanden,
A., Zhang, B., Helm, V., Korsgaard, N. J., Colgan, W., Larsen, N. K., Liu,
L., Hansen, K., Barletta, V., Dahl-Jensen, T. S., Søndergaard, A. S.,
Csatho, B. M., Sasgen, I., Box, J., and Schenk, T.: Centennial response of
Greenland's three largest outlet glaciers, Nat. Commun., 11, 5718,
https://doi.org/10.1038/s41467-020-19580-5, 2020. a
Kopp, R. E., Hay, C. C., Little, C. M., and Mitrovica, J. X.: Geographic
Variability of Sea-Level Change, Current Climate Change Reports, 1, 192–204,
https://doi.org/10.1007/s40641-015-0015-5, 2015. a
Larson, K. M., Ray, R. D., Nievinski, F. G., and Freymueller, J. T.: The
Accidental Tide Gauge: A GPS Reflection Case Study From Kachemak Bay,
Alaska, IEEE Geosci. Remote S., 10, 1200–1204,
https://doi.org/10.1109/LGRS.2012.2236075, 2013. a, b, c
Meyssignac, B., Slangen, A. B. A., Melet, A., Church, J. A., Fettweis, X.,
Marzeion, B., Agosta, C., Ligtenberg, S. R. M., Spada, G., Richter, K.,
Palmer, M. D., Roberts, C. D., and Champollion, N.: Evaluating Model
Simulations of Twentieth-Century Sea-Level Rise. Part II: Regional Sea-Level
Changes, J. Climate, 30, 8565–8593,
https://doi.org/10.1175/JCLI-D-17-0112.1, 2017. a
Mitrovica, J. X., Gomez, N., Morrow, E., Hay, C., Latychev, K., and Tamisiea,
M. E.: On the robustness of predictions of sea level fingerprints,
Geophys. J. Int., 187, 729–742,
https://doi.org/10.1111/j.1365-246X.2011.05090.x, 2011. a
Nikolaidou, T., Santos, M. C., Williams, S. D. P., and Geremia-Nievinski, F.:
Raytracing atmospheric delays in ground-based GNSS reflectometry, J. Geodesy, 94, 68, https://doi.org/10.1007/s00190-020-01390-8, 2020. a, b, c, d
Pattyn, F. and Morlighem, M.: The uncertain future of the Antarctic Ice Sheet,
Science, 367, 1331–1335, https://doi.org/10.1126/science.aaz5487, 2020. a
Peng, F. and Deng, X.: Validation of Sentinel-3A SAR mode sea level anomalies
around the Australian coastal region, Remote Sens. Environ., 237,
111548, https://doi.org/10.1016/j.rse.2019.111548, 2020. a
Purnell, D.: gnssr_lowcost, https://doi.org/10.5281/zenodo.4790412, 2021. a
Pytharouli, S., Chaikalis, S., and Stiros, S. C.: Uncertainty and bias in
electronic tide-gauge records: Evidence from collocated sensors, Measurement,
125, 496–508, https://doi.org/10.1016/j.measurement.2018.05.012,
2018. a, b, c
Roesler, C. and Larson, K. M.: Software tools for GNSS interferometric
reflectometry (GNSS-IR), GPS Solutions, 22, 80,
https://doi.org/10.1007/s10291-018-0744-8, 2018. a, b
Santamaría-Gómez, A. and Watson, C.: Remote leveling of tide gauges
using GNSS reflectometry: case study at Spring Bay, Australia, GPS
Solutions, 21, 451–459, https://doi.org/10.1007/s10291-016-0537-x, 2017. a, b
Seifi, F., Deng, X., and Andersen, O. B.: Assessment of the Accuracy of Recent
Empirical and Assimilated Tidal Models for the Great Barrier Reef, Australia,
Using Satellite and Coastal Data, Remote Sens., 11, 1211, 2019. a
Sermet, Y., Villanueva, P., Sit, M. A., and Demir, I.: Crowdsourced approaches
for stage measurements at ungauged locations using smartphones, Hydrolog. Sci. J., 65, 813–822, https://doi.org/10.1080/02626667.2019.1659508, 2020. a
Slangen, A. B. A., Church, J. A., Agosta, C., Fettweis, X., Marzeion, B., and
Richter, K.: Anthropogenic forcing dominates global mean sea-level rise since
1970, Nat. Clim. Change, 6, 701–705, https://doi.org/10.1038/nclimate2991, 2016. a
Tabibi, S., Nievinski, F. G., Dam, T. V., and Monico, J. F.: Assessment of
modernized GPS L5 SNR for ground-based multipath reflectometry applications,
Adv. Space Res., 55, 1104–1116,
https://doi.org/10.1016/j.asr.2014.11.019, 2015. a
Tabibi, S., Geremia-Nievinski, F., Francis, O., and van Dam, T.: Tidal
analysis of GNSS reflectometry applied for coastal sea level sensing in
Antarctica and Greenland, Remote Sens. Environ., 248, 111959,
https://doi.org/10.1016/j.rse.2020.111959, 2020. a, b, c
Taherkhani, M., Vitousek, S., Barnard, P. L., Frazer, N., Anderson, T. R., and
Fletcher, C. H.: Sea-level rise exponentially increases coastal flood
frequency, Sci. Rep., 10, 6466, https://doi.org/10.1038/s41598-020-62188-4,
2020. a
Tamisiea, M. E., Hughes, C. W., Williams, S. D. P., and Bingley, R. M.: Sea
level: measuring the bounding surfaces of the ocean, Philosophical
Transactions of the Royal Society A: Mathematical, Phys. Eng. Sci., 372, 20130336, https://doi.org/10.1098/rsta.2013.0336, 2014. a
Williams, S. D. P. and Nievinski, F. G.: Tropospheric delays in ground-based
GNSS multipath reflectometry–Experimental evidence from coastal sites,
J. Geophsy. Res.-Sol., 122, 2310–2327,
https://doi.org/10.1002/2016JB013612, 2017. a, b, c
Williams, S. D. P., Bell, P. S., McCann, D. L., Cooke, R., and Sams, C.:
Demonstrating the Potential of Low-Cost GPS Units for the Remote Measurement
of Tides and Water Levels Using Interferometric Reflectometry, J. Atmos. Ocean. Technol., 37, 1925–1935,
https://doi.org/10.1175/JTECH-D-20-0063.1, 2020. a, b, c
Yamawaki, M. K., Geremia-Nievinski, F., and Monico, J. F. G.: High-Rate Altimetry in SNR-Based GNSS-R: Proof-of-Concept of a Synthetic Vertical Array, IEEE Geosci. Remote S., 1–5, https://doi.org/10.1109/LGRS.2021.3068091, 2021. a
Short summary
We present a new technique for precisely monitoring water levels (e.g. sea level, rivers or lakes) using low-cost equipment (approximately USD 100–200) that is simple to build and install. The technique builds on previous work using antennas that were designed for navigation purposes. Multiple antennas in the same location are used to obtain more precise measurements than those obtained when using a single antenna. Software for analysis is provided with the article.
We present a new technique for precisely monitoring water levels (e.g. sea level, rivers or...