Articles | Volume 9, issue 2
https://doi.org/10.5194/esurf-9-317-2021
https://doi.org/10.5194/esurf-9-317-2021
Research article
 | 
16 Apr 2021
Research article |  | 16 Apr 2021

Hack distributions of rill networks and nonlinear slope length–soil loss relationships

Tyler H. Doane, Jon D. Pelletier, and Mary H. Nichols

Related authors

Rarefied particle motions on hillslopes – Part 1: Theory
David Jon Furbish, Joshua J. Roering, Tyler H. Doane, Danica L. Roth, Sarah G. W. Williams, and Angel M. Abbott
Earth Surf. Dynam., 9, 539–576, https://doi.org/10.5194/esurf-9-539-2021,https://doi.org/10.5194/esurf-9-539-2021, 2021
Short summary
Rarefied particle motions on hillslopes – Part 2: Analysis
David Jon Furbish, Sarah G. W. Williams, Danica L. Roth, Tyler H. Doane, and Joshua J. Roering
Earth Surf. Dynam., 9, 577–613, https://doi.org/10.5194/esurf-9-577-2021,https://doi.org/10.5194/esurf-9-577-2021, 2021
Short summary
Rarefied particle motions on hillslopes – Part 3: Entropy
David Jon Furbish, Sarah G. W. Williams, and Tyler H. Doane
Earth Surf. Dynam., 9, 615–628, https://doi.org/10.5194/esurf-9-615-2021,https://doi.org/10.5194/esurf-9-615-2021, 2021
Short summary
Rarefied particle motions on hillslopes – Part 4: Philosophy
David Jon Furbish and Tyler H. Doane
Earth Surf. Dynam., 9, 629–664, https://doi.org/10.5194/esurf-9-629-2021,https://doi.org/10.5194/esurf-9-629-2021, 2021
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
An evaluation of flow-routing algorithms for calculating contributing area on regular grids
Alexander B. Prescott, Jon D. Pelletier, Satya Chataut, and Sriram Ananthanarayan
Earth Surf. Dynam., 13, 239–256, https://doi.org/10.5194/esurf-13-239-2025,https://doi.org/10.5194/esurf-13-239-2025, 2025
Short summary
Geometric constraints on tributary fluvial network junction angles
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
Earth Surf. Dynam., 13, 219–238, https://doi.org/10.5194/esurf-13-219-2025,https://doi.org/10.5194/esurf-13-219-2025, 2025
Short summary
Automatic detection of floating instream large wood in videos using deep learning
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
Earth Surf. Dynam., 13, 167–189, https://doi.org/10.5194/esurf-13-167-2025,https://doi.org/10.5194/esurf-13-167-2025, 2025
Short summary
Investigating uncertainty and parameter sensitivity in bedform analysis by using a Monte Carlo approach
Julius Reich and Axel Winterscheid
Earth Surf. Dynam., 13, 191–217, https://doi.org/10.5194/esurf-13-191-2025,https://doi.org/10.5194/esurf-13-191-2025, 2025
Short summary
Geomorphic imprint of high-mountain floods: insights from the 2022 hydrological extreme across the upper Indus River catchment in the northwestern Himalayas
Abhishek Kashyap, Kristen L. Cook, and Mukunda Dev Behera
Earth Surf. Dynam., 13, 147–166, https://doi.org/10.5194/esurf-13-147-2025,https://doi.org/10.5194/esurf-13-147-2025, 2025
Short summary

Cited articles

Bennett, S. and Liu, R.: Basin self-similarity, Hack's law, and the evolution of experimental rill networks, Geology, 44, 35–38, 2016. a
Carslaw, H. and Jaeger, J.: Conduction of heat in solids, chap. 2, Clarendon Press, Oxford, UK, 1959. a
Damron, M. and Winter, C. L.: A non-Markovian model of rill erosion, arXiv: preprint, arXiv:0810.1483, 2008. a, b
Doane, T. H. and Pelletier, J. D.: Rill Network Data and Codes, Zenodo, https://doi.org/10.5281/zenodo.3952897, 2020. a, b
Dodds, P. S. and Rothman, D. H.: Geometry of river networks. I. Scaling, fluctuations, and deviations, Phys. Rev. E., 63, 016115, https://doi.org/10.1103/PhysRevE.63.016115, 2000. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Download
Short summary
This paper explores how the geometry of rill networks contributes to observed nonlinear relationships between soil loss and hillslope length. This work develops probability functions of geometrical quantities of the networks and then extends the theory to hydraulic variables by relying on well-known relationships. Theory is complemented by numerical modeling on numerical and natural surfaces. Results suggest that the particular arrangement of rill networks contributes to nonlinear relationships.
Share