Articles | Volume 9, issue 2
https://doi.org/10.5194/esurf-9-317-2021
https://doi.org/10.5194/esurf-9-317-2021
Research article
 | 
16 Apr 2021
Research article |  | 16 Apr 2021

Hack distributions of rill networks and nonlinear slope length–soil loss relationships

Tyler H. Doane, Jon D. Pelletier, and Mary H. Nichols

Related authors

Rarefied particle motions on hillslopes – Part 1: Theory
David Jon Furbish, Joshua J. Roering, Tyler H. Doane, Danica L. Roth, Sarah G. W. Williams, and Angel M. Abbott
Earth Surf. Dynam., 9, 539–576, https://doi.org/10.5194/esurf-9-539-2021,https://doi.org/10.5194/esurf-9-539-2021, 2021
Short summary
Rarefied particle motions on hillslopes – Part 2: Analysis
David Jon Furbish, Sarah G. W. Williams, Danica L. Roth, Tyler H. Doane, and Joshua J. Roering
Earth Surf. Dynam., 9, 577–613, https://doi.org/10.5194/esurf-9-577-2021,https://doi.org/10.5194/esurf-9-577-2021, 2021
Short summary
Rarefied particle motions on hillslopes – Part 3: Entropy
David Jon Furbish, Sarah G. W. Williams, and Tyler H. Doane
Earth Surf. Dynam., 9, 615–628, https://doi.org/10.5194/esurf-9-615-2021,https://doi.org/10.5194/esurf-9-615-2021, 2021
Short summary
Rarefied particle motions on hillslopes – Part 4: Philosophy
David Jon Furbish and Tyler H. Doane
Earth Surf. Dynam., 9, 629–664, https://doi.org/10.5194/esurf-9-629-2021,https://doi.org/10.5194/esurf-9-629-2021, 2021
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Testing floc settling velocity models in rivers and freshwater wetlands
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024,https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024,https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Barchan swarm dynamics from a Two-Flank Agent-Based Model
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024,https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024,https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024,https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary

Cited articles

Bennett, S. and Liu, R.: Basin self-similarity, Hack's law, and the evolution of experimental rill networks, Geology, 44, 35–38, 2016. a
Carslaw, H. and Jaeger, J.: Conduction of heat in solids, chap. 2, Clarendon Press, Oxford, UK, 1959. a
Damron, M. and Winter, C. L.: A non-Markovian model of rill erosion, arXiv: preprint, arXiv:0810.1483, 2008. a, b
Doane, T. H. and Pelletier, J. D.: Rill Network Data and Codes, Zenodo, https://doi.org/10.5281/zenodo.3952897, 2020. a, b
Dodds, P. S. and Rothman, D. H.: Geometry of river networks. I. Scaling, fluctuations, and deviations, Phys. Rev. E., 63, 016115, https://doi.org/10.1103/PhysRevE.63.016115, 2000. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Download
Short summary
This paper explores how the geometry of rill networks contributes to observed nonlinear relationships between soil loss and hillslope length. This work develops probability functions of geometrical quantities of the networks and then extends the theory to hydraulic variables by relying on well-known relationships. Theory is complemented by numerical modeling on numerical and natural surfaces. Results suggest that the particular arrangement of rill networks contributes to nonlinear relationships.