Articles | Volume 11, issue 3
https://doi.org/10.5194/esurf-11-529-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-529-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Initial shape reconstruction of a volcanic island as a tool for quantifying long-term coastal erosion: the case of Corvo Island (Azores)
Rémi Bossis
CORRESPONDING AUTHOR
GET, University of Toulouse, CNRS, IRD, UPS, Toulouse, 31400, France
Vincent Regard
GET, University of Toulouse, CNRS, IRD, UPS, Toulouse, 31400, France
Sébastien Carretier
GET, University of Toulouse, CNRS, IRD, UPS, Toulouse, 31400, France
Related authors
Rémi Bossis, Vincent Regard, Sébastien Carretier, and Sandrine Choy
EGUsphere, https://doi.org/10.5194/egusphere-2023-3020, https://doi.org/10.5194/egusphere-2023-3020, 2024
Short summary
Short summary
The erosion of rocky coasts occurs episodically through wave action and landslides, constituting a major natural hazard. Documenting the factors that control the coastal retreat rate over millennia is fundamental to evidencing any change in time. However, the known rates to date are essentially representative of the last few decades. Here, we present a new method using the concentration of an isotope, 10Be in sediment eroded from the cliff to quantify its retreat rate averaged over millennia.
Violeta Tolorza, Christian H. Mohr, Mauricio Zambrano-Bigiarini, Benjamín Sotomayor, Dagoberto Poblete-Caballero, Sebastien Carretier, Mauricio Galleguillos, and Oscar Seguel
Earth Surf. Dynam., 12, 841–861, https://doi.org/10.5194/esurf-12-841-2024, https://doi.org/10.5194/esurf-12-841-2024, 2024
Short summary
Short summary
We calculated disturbances and landscape-lowering rates across various timescales in a ~ 406 km2 catchment in the Chilean Coastal Range. Intensive management of exotic tree plantations involves short rotational cycles (planting and harvesting by replanting clear-cuts) lasting 9–25 years, dense forestry road networks (increasing connectivity), and a recent increase in wildfires. Concurrently, persistent drought conditions and the high water demand of fast-growing trees reduce water availability.
Rémi Bossis, Vincent Regard, Sébastien Carretier, and Sandrine Choy
EGUsphere, https://doi.org/10.5194/egusphere-2023-3020, https://doi.org/10.5194/egusphere-2023-3020, 2024
Short summary
Short summary
The erosion of rocky coasts occurs episodically through wave action and landslides, constituting a major natural hazard. Documenting the factors that control the coastal retreat rate over millennia is fundamental to evidencing any change in time. However, the known rates to date are essentially representative of the last few decades. Here, we present a new method using the concentration of an isotope, 10Be in sediment eroded from the cliff to quantify its retreat rate averaged over millennia.
Vincent Regard, Rafael Almar, Marcan Graffin, Sébastien Carretier, Edward Anthony, Roshanka Ranasinghe, and Pierre Maffre
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-165, https://doi.org/10.5194/nhess-2023-165, 2023
Publication in NHESS not foreseen
Short summary
Short summary
The erosion of sandy beaches affects human activities and ecosystems. Research has mainly focused on sea level and wave changes, and while localized sediment research is abundant, the global effect of reduced fluvial sediment supply remains unexplored. This study presents a global sediment model that demonstrates the significant impact of river dams on beach erosion worldwide. Sediment can travel long distances via wave-induced transport, often away from river outlets.
Sébastien Carretier, Vincent Regard, Youssouf Abdelhafiz, and Bastien Plazolles
Geosci. Model Dev., 16, 6741–6755, https://doi.org/10.5194/gmd-16-6741-2023, https://doi.org/10.5194/gmd-16-6741-2023, 2023
Short summary
Short summary
We present the development of a code to simulate simultaneously the dynamics of landscapes over geological time and the evolution of the concentration of cosmogenic isotopes in grains throughout their transport from the slopes to the river outlets. This new model makes it possible to study the relationship between the detrital signal of cosmogenic isotope concentration measured in sediment and the erosion--deposition processes in watersheds.
Mélody Prémaillon, Vincent Regard, Thomas J. B. Dewez, and Yves Auda
Earth Surf. Dynam., 6, 651–668, https://doi.org/10.5194/esurf-6-651-2018, https://doi.org/10.5194/esurf-6-651-2018, 2018
Short summary
Short summary
Coastal erosion is of major concern for society. Our study focused on rocky coasts, where coastal evolution remains poorly understood. We utilized the increasing number of erosion-related data and compiled them to better understand how and to what degree rocky coasts erode. We found that rock resistance primarily explained erosion rates, whilst the influence of the climate and sea was secondary. Weak rock coasts lose a median of 23 meters per century, about ten times more than hard rock coasts.
Sébastien Carretier, Yves Goddéris, Javier Martinez, Martin Reich, and Pierre Martinod
Earth Surf. Dynam., 6, 217–237, https://doi.org/10.5194/esurf-6-217-2018, https://doi.org/10.5194/esurf-6-217-2018, 2018
Short summary
Short summary
The role of mountain uplift and associated silicate weathering in the global climate over geological times is controversial. Previous soil column models suggest that weathering falls at a high denudation rate. We present the results of a 3-D model that couples erosion and weathering, a CO2 consumer during mountain uplift. Our model suggests that the weathering of temporarily stocked colluvium may contribute significantly to the mountain weathering outflux at high denudation rates.
Margaux Mouchené, Peter van der Beek, Sébastien Carretier, and Frédéric Mouthereau
Earth Surf. Dynam., 5, 125–143, https://doi.org/10.5194/esurf-5-125-2017, https://doi.org/10.5194/esurf-5-125-2017, 2017
Short summary
Short summary
The Lannemezan megafan (northern Pyrenean foreland) was abandoned during the Quaternary and subsequently incised. We use numerical models to explore possible scenarios for the evolution of this megafan. We show that autogenic processes are sufficient to explain its evolution. Climate may have played a second-order role; in contrast base-level change, tectonic activity and flexural isostatic rebound do not appear to have influenced its evolution.
Sébastien Carretier, Pierre Martinod, Martin Reich, and Yves Godderis
Earth Surf. Dynam., 4, 237–251, https://doi.org/10.5194/esurf-4-237-2016, https://doi.org/10.5194/esurf-4-237-2016, 2016
Short summary
Short summary
We introduce moving clasts (grains, minerals, cobbles) in a landscape evolution model.
This coupling has many potential applications, such as sediment provenance or the tracing of weathered material. It fills a gap between long-term landscape dynamics, which are difficult to tackle, and sediment clast populations studied in the field.
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Barchan swarm dynamics from a Two-Flank Agent-Based Model
A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Tracking slow-moving landslides with PlanetScope data: new perspectives on the satellite's perspective
Topographic metrics for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, South Korea
Acceleration of coastal-retreat rates for high-Arctic rock cliffs on Brøggerhalvøya, Svalbard, over the past decade
The impact of bedrock meander cutoffs on 50 kyr scale incision rates, San Juan River, Utah
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Large structure simulation for landscape evolution models
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Role of the forcing sources in morphodynamic modelling of an embayed beach
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Overdeepening or tunnel valley of the Aare glacier on the northern margin of the European Alps: Basins, riegels, and slot canyons
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Time-varying drainage basin development and erosion on volcanic edifices
Geomorphic risk maps for river migration using probabilistic modeling – a framework
Evolution of submarine canyons and hanging-wall fans: insights from geomorphic experiments and morphodynamic models
Riverine sediment response to deforestation in the Amazon basin
Physical modeling of ice-sheet-induced salt movements using the example of northern Germany
Geometric constraints on tributary fluvial network junction angles
Downstream rounding rate of pebbles in the Himalaya
Post-fire Variability in Sediment Transport by Ravel in the Diablo Range
Landscape response to tectonic deformation and cyclic climate change since ca. 800 ka in the southern Central Andes
Examination of Analytical Shear Stress Predictions for Coastal Dune Evolution
A physics-based model for fluvial valley width
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Quantifying the migration rate of drainage divides from high-resolution topographic data
Validating floc settling velocity models in rivers and freshwater wetlands
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
A simple model for faceted topographies at normal faults based on an extended stream-power law
Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics
Path length and sediment transport estimation from DEMs of difference: a signal processing approach
A numerical model for duricrust formation by water table fluctuations
Influence of cohesive clay on wave–current ripple dynamics captured in a 3D phase diagram
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 1: Erosion dynamics
Statistical characterization of erosion and sediment transport mechanics in shallow tidal environments – Part 2: Suspended sediment dynamics
Geomorphological and hydrological controls on sediment export in earthquake-affected catchments in the Nepal Himalaya
Optimization of passive acoustic bedload monitoring in rivers by signal inversion
Stochastic properties of coastal flooding events – Part 2: Probabilistic analysis
Field monitoring of pore water pressure in fully and partly saturated debris flows at Ohya landslide scar, Japan
Analysis of autogenic bifurcation processes resulting in river avulsion
Evidence of slow millennial cliff retreat rates using cosmogenic nuclides in coastal colluvium
Bedload transport fluctuations, flow conditions, and disequilibrium ratio at the Swiss Erlenbach stream: results from 27 years of high-resolution temporal measurements
Stochastic properties of coastal flooding events – Part 1: convolutional-neural-network-based semantic segmentation for water detection
Coexistence of two dune scales in a lowland river
Alpine hillslope failure in the western US: insights from the Chaos Canyon landslide, Rocky Mountain National Park, USA
Using repeat UAV-based laser scanning and multispectral imagery to explore eco-geomorphic feedbacks along a river corridor
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Dominic T. Robson and Andreas C. W. Baas
Earth Surf. Dynam., 12, 1205–1226, https://doi.org/10.5194/esurf-12-1205-2024, https://doi.org/10.5194/esurf-12-1205-2024, 2024
Short summary
Short summary
Barchans are fast-moving sand dunes which form large populations (swarms) on Earth and Mars. We show that a small range of model parameters produces swarms in which dune size does not vary downwind – something that is observed in nature but not when using earlier models. We also show how the shape of dunes and the spatial patterns they form are affected by wind direction. This work furthers our understanding of the interplay between environmental drivers, dune interactions, and swarm properties.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Ariane Mueting and Bodo Bookhagen
Earth Surf. Dynam., 12, 1121–1143, https://doi.org/10.5194/esurf-12-1121-2024, https://doi.org/10.5194/esurf-12-1121-2024, 2024
Short summary
Short summary
This study investigates the use of optical PlanetScope data for offset tracking of the Earth's surface movement. We found that co-registration accuracy is locally degraded when outdated elevation models are used for orthorectification. To mitigate this bias, we propose to only correlate scenes acquired from common perspectives or base orthorectification on more up-to-date elevation models generated from PlanetScope data alone. This enables a more detailed analysis of landslide dynamics.
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, and Byung Yong Yu
Earth Surf. Dynam., 12, 1091–1120, https://doi.org/10.5194/esurf-12-1091-2024, https://doi.org/10.5194/esurf-12-1091-2024, 2024
Short summary
Short summary
Topographic metrics were used to understand changes due to tectonic activity. We evaluated the relative tectonic activity along the Ulsan Fault Zone (UFZ), one of the most active fault zones in South Korea. We divided the UFZ into five segments, based on the spatial variation in activity. We modeled the landscape evolution of the study area and interpreted tectono-geomorphic history during which the northern part of the UFZ experienced asymmetric uplift, while the southern part did not.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, and George E. Hilley
Earth Surf. Dynam., 12, 1071–1089, https://doi.org/10.5194/esurf-12-1071-2024, https://doi.org/10.5194/esurf-12-1071-2024, 2024
Short summary
Short summary
The rates at which rivers erode their bed can be used to interpret the geologic history of a region. However, these rates depend significantly on the time window over which you measure. We use multiple dating methods to determine an incision rate for the San Juan River and compare it to regional rates with longer timescales. We demonstrate how specific geologic events, such as cutoffs of bedrock meander bends, are likely to preserve material we can date but also bias the rates we measure.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Julien Coatléven and Benoit Chauveau
Earth Surf. Dynam., 12, 995–1026, https://doi.org/10.5194/esurf-12-995-2024, https://doi.org/10.5194/esurf-12-995-2024, 2024
Short summary
Short summary
The aim of this paper is to explain how to incorporate classical water flow routines into landscape evolution models while keeping numerical errors under control. The key idea is to adapt filtering strategies to eliminate anomalous numerical errors and mesh dependencies, as confirmed by convergence tests with analytic solutions. The emergence of complex geomorphic structures is now driven exclusively by nonlinear heterogeneous physical processes rather than by random numerical artifacts.
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024, https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Short summary
In this study, we investigated the geomorphology, sedimentology, and chronology of Tuanjie (seven terraces) and Taiping (three terraces) terraces in Diexi, eastern Tibetan Plateau. Results highlight that two damming and three outburst events occurred in the area during the late Pleistocene, and the outburst floods have been a major factor in the formation of tectonically active mountainous river terraces. Tectonic activity and climatic changes play a minor role.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Fabian Schläfli, and Michael Alfred Schwenk
EGUsphere, https://doi.org/10.5194/egusphere-2024-683, https://doi.org/10.5194/egusphere-2024-683, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024, https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary
Short summary
Ice cliffs are melt hot spots that increase melt rates on debris-covered glaciers which otherwise see a reduction in melt rates. In this study, we show how surface runoff streams contribute to the generation, evolution, and survival of ice cliffs by carving into the glacier and transporting rocky debris. On Kennicott Glacier, Alaska, 33 % of ice cliffs are actively influenced by streams, while nearly half are within 10 m of streams.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Brayden Noh, Omar Wani, Kieran B. J. Dunne, and Michael P. Lamb
Earth Surf. Dynam., 12, 691–708, https://doi.org/10.5194/esurf-12-691-2024, https://doi.org/10.5194/esurf-12-691-2024, 2024
Short summary
Short summary
In this paper, we propose a framework for generating risk maps that provide the probabilities of erosion due to river migration. This framework uses concepts from probability theory to learn the river migration model's parameter values from satellite data while taking into account parameter uncertainty. Our analysis shows that such geomorphic risk estimation is more reliable than models that do not explicitly consider various sources of variability and uncertainty.
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024, https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
Anuska Narayanan, Sagy Cohen, and John R. Gardner
Earth Surf. Dynam., 12, 581–599, https://doi.org/10.5194/esurf-12-581-2024, https://doi.org/10.5194/esurf-12-581-2024, 2024
Short summary
Short summary
This study investigates the profound impact of deforestation in the Amazon on sediment dynamics. Novel remote sensing data and statistical analyses reveal significant changes, especially in heavily deforested regions, with rapid effects within a year. In less disturbed areas, a 1- to 2-year lag occurs, influenced by natural sediment shifts and human activities. These findings highlight the need to understand the consequences of human activity for our planet's future.
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024, https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Short summary
We investigate the reaction of salt structures on ice sheet transgressions. We used a series of sandbox models that enabled us to experiment with scaled-down versions of salt bodies from northern Germany. The strongest reactions occurred when large salt pillows were partly covered by the ice load. Subsurface salt structures may play an important role in the energy transition, e.g., as energy storage. Thus, it is important to understand all processes that affect their stability.
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
EGUsphere, https://doi.org/10.5194/egusphere-2024-1153, https://doi.org/10.5194/egusphere-2024-1153, 2024
Short summary
Short summary
On the gently sloping landscapes next to mountain fronts, junction angles tend to be lower (more acute), while in bedrock landscapes where the initial landscape or tectonic forcing is likely more spatially variable, junction angles tend to be larger (more obtuse). We demonstrate this using an analysis of ~20 million junction angles for the U.S.A., augmented by analyses of the Loess Plateau, China, and synthetic landscapes.
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024, https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
Short summary
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This study quantifies pebble roundness along the length of two Himalayan rivers. We demonstrate that roundness increases with downstream distance and that the rates are dependent on rock type. We apply this to reconstructing travel distances and hence the size of ancient Himalaya. Results show that the ancient river network was larger than the modern one, indicating that there has been river capture.
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2694, https://doi.org/10.5194/egusphere-2023-2694, 2024
Short summary
Short summary
Loose grains travel farther after a fire because no vegetation is left to stop them. This matters since loose grains at the base of a slope can turn into a debris flow if it rains. To find if grass growing back after a fire had different impacts on grains of different sizes on slopes of different steepness, we dropped thousands of natural grains and measured how far they went. Large grains went farther 7 months after the fire than 11 months after, and small grain movement didn’t change much.
Elizabeth Orr, Taylor Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo Alonso
EGUsphere, https://doi.org/10.5194/egusphere-2024-784, https://doi.org/10.5194/egusphere-2024-784, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100-kyr) preserved downstream and higher-frequency cycles (21/40-kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, and Andrew Trautz
EGUsphere, https://doi.org/10.5194/egusphere-2024-855, https://doi.org/10.5194/egusphere-2024-855, 2024
Short summary
Short summary
Using computational fluid dynamics, we analyze the error trends of an analytical shear stress distribution model used to drive aeolian transport for coastal dunes which are an important line of defense against storm related flooding hazards. We find that compared to numerical simulations, the analytical model results in a net overprediction of the landward migration rate. Additionally, two data-driven approaches are proposed for reducing the error while maintaining computational efficiency.
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024, https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Short summary
Fluvial valleys are ubiquitous landforms, and understanding their formation and evolution affects a wide range of disciplines from archaeology and geology to fish biology. Here, we develop a model to predict the width of fluvial valleys for a wide range of geographic conditions. In the model, fluvial valley width is controlled by the two competing factors of lateral channel mobility and uplift. The model complies with available data and yields a broad range of quantitative predictions.
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024, https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Short summary
We reconstructed the evolution of Fire Island, a barrier island in New York, USA, to identify drivers of landscape change. Results reveal Fire Island was once divided into multiple inlet-separated islands with distinct features. Later, inlets closed, and Fire Island’s landscape became more uniform as human activities intensified. The island is now less mobile and less likely to resist and recover from storm impacts and sea level rise. This vulnerability may exist for other stabilized barriers.
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024, https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Short summary
The drainage-divide stability provides new insights into both the river network evolution and the tectonic and/or climatic changes. Several methods have been proposed to determine the direction of drainage-divide migration. However, how to quantify the migration rate of drainage divides remains challenging. In this paper, we propose a new method to calculate the migration rate of drainage divides from high-resolution topographic data.
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
EGUsphere, https://doi.org/10.5194/egusphere-2024-524, https://doi.org/10.5194/egusphere-2024-524, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster settling particles called flocs, but floc settling velocity theory has not been fully validated. Data from the Wax Lake Delta verify a semi-empirical model relying on turbulence and geochemical factors. We showed that the representative grain diameter within flocs relies on floc structure and that floc internal flow follows a model in which flocs consist of permeable grain clusters, thus improving a physics-based settling velocity model.
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024, https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary
Short summary
Edge rounding in Shap granite glacial erratics is an irregular function of distance from the source outcrop in northern England, UK. Block shape is conservative, evolving according to block fracture mechanics – stochastic and silver ratio models – towards either of two attractor states. Progressive reduction in size occurs for blocks transported at the sole of the ice mass where the blocks are subject to compressive and tensile forces of the ice acting against a bedrock or till surface.
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2024-336, https://doi.org/10.5194/egusphere-2024-336, 2024
Short summary
Short summary
Faceted topographies are impressing footprints of active tectonics in geomorphology. This paper investigates the evolution of faceted topographies at normal faults and its interaction with the river network theoretically and numerically. As a main result beyond several relations for the the geometry of facets, the horizontal displacement associated to normal faults is crucial for the dissection of initially polygonal facets into triangular facets bounded by almost parallel rivers.
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024, https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary
Short summary
River morphology has traditionally been divided by the size 2 mm. We use dimensionless arguments to show that particles in the 1–5 mm range (i) are the finest range not easily suspended by alluvial flood flows, (ii) are transported preferentially over coarser gravel, and (iii), within limits, are also transported preferentially over sand. We show how fluid viscosity mediates the special status of sediment in this range.
Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, and Simone Bizzi
Earth Surf. Dynam., 12, 321–345, https://doi.org/10.5194/esurf-12-321-2024, https://doi.org/10.5194/esurf-12-321-2024, 2024
Short summary
Short summary
We propose that the pattern of erosion and deposition from repeat topographic surveys can be a proxy for path length in gravel-bed rivers. With laboratory and field data, we applied tools from signal processing to quantify this periodicity and used these path length estimates to calculate sediment transport using the morphological method. Our results highlight the potential to expand the use of the morphological method using only remotely sensed data as well as its limitations.
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
EGUsphere, https://doi.org/10.5194/egusphere-2024-160, https://doi.org/10.5194/egusphere-2024-160, 2024
Short summary
Short summary
We have developed a new numerical model to represent the formation of ferricretes which are iron-rich, hard layers found in soils and at the surface of the Earth. We assume that the formation mechanism implies variations in the height of the water table and that the hardening rate is proportional to precipitation. The model allows us to quantify the potential feedbacks they generate on the surface topography and the thickness of the regolith/soil layer.
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024, https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Short summary
The seabed changes from flat to rippled in response to the frictional influence of waves and currents. This experimental study has shown that the speed of this change, the size of ripples that result and even whether ripples appear also depend on the amount of sticky mud present. This new classification on the basis of initial mud content should lead to improvements in models of seabed change in present environments by engineers and the interpretation of past environments by geologists.
Andrea D'Alpaos, Davide Tognin, Laura Tommasini, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 181–199, https://doi.org/10.5194/esurf-12-181-2024, https://doi.org/10.5194/esurf-12-181-2024, 2024
Short summary
Short summary
Sediment erosion induced by wind waves is one of the main drivers of the morphological evolution of shallow tidal environments. However, a reliable description of erosion events for the long-term morphodynamic modelling of tidal systems is still lacking. By statistically characterizing sediment erosion dynamics in the Venice Lagoon over the last 4 centuries, we set up a novel framework for a synthetic, yet reliable, description of erosion events in tidal systems.
Davide Tognin, Andrea D'Alpaos, Luigi D'Alpaos, Andrea Rinaldo, and Luca Carniello
Earth Surf. Dynam., 12, 201–218, https://doi.org/10.5194/esurf-12-201-2024, https://doi.org/10.5194/esurf-12-201-2024, 2024
Short summary
Short summary
Reliable quantification of sediment transport processes is necessary to understand the fate of shallow tidal environments. Here we present a framework for the description of suspended sediment dynamics to quantify deposition in the long-term modelling of shallow tidal systems. This characterization, together with that of erosion events, allows one to set up synthetic, yet reliable, models for the long-term evolution of tidal landscapes.
Emma L. S. Graf, Hugh D. Sinclair, Mikaël Attal, Boris Gailleton, Basanta Raj Adhikari, and Bishnu Raj Baral
Earth Surf. Dynam., 12, 135–161, https://doi.org/10.5194/esurf-12-135-2024, https://doi.org/10.5194/esurf-12-135-2024, 2024
Short summary
Short summary
Using satellite images, we show that, unlike other examples of earthquake-affected rivers, the rivers of central Nepal experienced little increase in sedimentation following the 2015 Gorkha earthquake. Instead, a catastrophic flood occurred in 2021 that buried towns and agricultural land under up to 10 m of sediment. We show that intense storms remobilised glacial sediment from high elevations causing much a greater impact than flushing of earthquake-induced landslides.
Mohamad Nasr, Adele Johannot, Thomas Geay, Sebastien Zanker, Jules Le Guern, and Alain Recking
Earth Surf. Dynam., 12, 117–134, https://doi.org/10.5194/esurf-12-117-2024, https://doi.org/10.5194/esurf-12-117-2024, 2024
Short summary
Short summary
Hydrophones are used to monitor sediment transport in the river by listening to the acoustic noise generated by particle impacts on the riverbed. However, this acoustic noise is modified by the river flow and can cause misleading information about sediment transport. This article proposes a model that corrects the measured acoustic signal. Testing the model showed that the corrected signal is better correlated with bedload flux in the river.
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 105–115, https://doi.org/10.5194/esurf-12-105-2024, https://doi.org/10.5194/esurf-12-105-2024, 2024
Short summary
Short summary
We provide a detailed characterization of the frequency, intensity and duration of flooding events at a site along the Texas coast. Our analysis demonstrates the suitability of relatively simple wave run-up models to estimate the frequency and intensity of coastal flooding. Our results validate and expand a probabilistic model of coastal flooding driven by wave run-up that can then be used in coastal risk management in response to sea level rise.
Shunsuke Oya, Fumitoshi Imaizumi, and Shoki Takayama
Earth Surf. Dynam., 12, 67–86, https://doi.org/10.5194/esurf-12-67-2024, https://doi.org/10.5194/esurf-12-67-2024, 2024
Short summary
Short summary
The monitoring of pore water pressure in fully and partly saturated debris flows was performed at Ohya landslide scar, central Japan. The pore water pressure in some partly saturated flows greatly exceeded the hydrostatic pressure. The depth gradient of the pore water pressure in the lower part of the flow was generally higher than the upper part of the flow. We conclude that excess pore water pressure is present in many debris flow surges and is an important mechanism in debris flow behavior.
Gabriele Barile, Marco Redolfi, and Marco Tubino
Earth Surf. Dynam., 12, 87–103, https://doi.org/10.5194/esurf-12-87-2024, https://doi.org/10.5194/esurf-12-87-2024, 2024
Short summary
Short summary
River bifurcations often show the closure of one branch (avulsion), whose causes are still poorly understood. Our model shows that when one branch stops transporting sediments, the other considerably erodes and captures much more flow, resulting in a self-sustaining process. This phenomenon intensifies when increasing the length of the branches, eventually leading to branch closure. This work may help to understand when avulsions occur and thus to design sustainable river restoration projects.
Rémi Bossis, Vincent Regard, Sébastien Carretier, and Sandrine Choy
EGUsphere, https://doi.org/10.5194/egusphere-2023-3020, https://doi.org/10.5194/egusphere-2023-3020, 2024
Short summary
Short summary
The erosion of rocky coasts occurs episodically through wave action and landslides, constituting a major natural hazard. Documenting the factors that control the coastal retreat rate over millennia is fundamental to evidencing any change in time. However, the known rates to date are essentially representative of the last few decades. Here, we present a new method using the concentration of an isotope, 10Be in sediment eroded from the cliff to quantify its retreat rate averaged over millennia.
Dieter Rickenmann
Earth Surf. Dynam., 12, 11–34, https://doi.org/10.5194/esurf-12-11-2024, https://doi.org/10.5194/esurf-12-11-2024, 2024
Short summary
Short summary
Field measurements of the bedload flux with a high temporal resolution in a steep mountain stream were used to analyse the transport fluctuations as a function of the flow conditions. The disequilibrium ratio, a proxy for the solid particle concentration in the flow, was found to influence the sediment transport behaviour, and above-average disequilibrium conditions – associated with a larger sediment availability on the streambed – substantially affect subsequent transport conditions.
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 1–10, https://doi.org/10.5194/esurf-12-1-2024, https://doi.org/10.5194/esurf-12-1-2024, 2024
Short summary
Short summary
Coastal flooding can cause significant damage to coastal ecosystems, infrastructure, and communities and is expected to increase in frequency with the acceleration of sea level rise. In order to respond to it, it is crucial to measure and model their frequency and intensity. Here, we show deep-learning techniques can be successfully used to automatically detect flooding events from complex coastal imagery, opening the way to real-time monitoring and data acquisition for model development.
Judith Y. Zomer, Bart Vermeulen, and Antonius J. F. Hoitink
Earth Surf. Dynam., 11, 1283–1298, https://doi.org/10.5194/esurf-11-1283-2023, https://doi.org/10.5194/esurf-11-1283-2023, 2023
Short summary
Short summary
Secondary bedforms that are superimposed on large, primary dunes likely play a large role in fluvial systems. This study demonstrates that they can be omnipresent. Especially during peak flows, they grow large and can have steep slopes, likely affecting flood risk and sediment transport dynamics. Primary dune morphology determines whether they continuously or intermittently migrate. During discharge peaks, the secondary bedforms can become the dominant dune scale.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Christopher Tomsett and Julian Leyland
Earth Surf. Dynam., 11, 1223–1249, https://doi.org/10.5194/esurf-11-1223-2023, https://doi.org/10.5194/esurf-11-1223-2023, 2023
Short summary
Short summary
Vegetation influences how rivers change through time, yet the way in which we analyse vegetation is limited. Current methods collect detailed data at the individual plant level or determine dominant vegetation types across larger areas. Herein, we use UAVs to collect detailed vegetation datasets for a 1 km length of river and link vegetation properties to channel evolution occurring within the study site, providing a new method for investigating the influence of vegetation on river systems.
Cited articles
Anderson, R. S. and Anderson, S. P.: Geomorphology: the mechanics and
chemistry of landscapes, Cambridge University Press, ISBN 978-0-521-51978-6, 2010.
Averes, T., Hofstede, J. L. A., Hinrichsen, A., Reimers, H.-C., and Winter,
C.: Cliff Retreat Contribution to the Littoral Sediment Budget along the
Baltic Sea Coastline of Schleswig-Holstein, Germany, J. Mar. Sci. Eng., 9,
870, https://doi.org/10.3390/jmse9080870, 2021.
Ávila, S. P., Santos, A. C., Penteado, A. M., Rodrigues, A. M., Quintino,
I., and Machado, M. I.: The molluscs of the intertidal algal turf in the Azores, Iberus: revista de la Sociedad Española de Malacología, 23, 67–76, 2005.
Bintanja, R. and van de Wal, R. S. W.: North American ice-sheet dynamics and
the onset of 100,000-year glacial cycles, Nature, 454, 869–872,
https://doi.org/10.1038/nature07158, 2008.
Bird, E. C.: Coastal geomorphology: an introduction, John Wiley & Sons,
ISBN 0-471-89977-1, 2011.
Casalbore, D., Romagnoli, C., Bosman, A., Anzidei, M., and Chiocci, F. L.:
Coastal hazard due to submarine canyons in active insular volcanoes:
examples from Lipari Island (southern Tyrrhenian Sea), J. Coastal
Conserv., 22, 989–999, https://doi.org/10.1007/s11852-017-0549-x, 2017.
Chang, Y.-C., Mitchell, N. C., and Quartau, R.: Landslides in the Upper
Submarine Slopes of Volcanic Islands: The Central Azores, Geochem. Geophy.
Geosy., 22, e2021GC009833, https://doi.org/10.1029/2021GC009833, 2021.
Costa, A. C. G., Hildenbrand, A., Marques, F. O., Sibrant, A. L. R., and Santos
de Campos, A.: Catastrophic flank collapses and slumping in Pico Island
during the last 130 kyr (Pico-Faial ridge, Azores Triple Junction), J.
Volcanol. Geoth. Res., 302, 33–46,
https://doi.org/10.1016/j.jvolgeores.2015.06.008, 2015.
Costa, S., Maquaire, O., Letortu, P., Thirard, G., Compain, V., Roulland,
T., Medjkane, M., Davidson, R., Graff, K., and Lissak, C.: Sedimentary
Coastal cliffs of Normandy: modalities and quantification of retreat, J.
Coastal. Res., 88, 46–60, 2019.
DePaolo, D. J. and Stolper, E. M.: Models of Hawaiian volcano growth and
plume structure: Implications of results from the Hawaii Scientific Drilling
Project, J. Geophys. Res.-Sol. Ea., 101, 11643–11654,
https://doi.org/10.1029/96JB00070, 1996.
Dewez, T. J., Rohmer, J., Regard, V., and Cnudde, C.:
Probabilistic coastal cliff collapse hazard from repeated terrestrial laser surveys: case study from Mesnil Val (Normandy, northern France), in: Proceedings 12th International Coastal Symposium (Plymouth, England), edited by: Conley, D. C., Masselink, G., Russell, P. E., and O’Hare, T. J., J. Coastal Res., 65, 702–707, 2013.
Dias, J. L. F.: Geologia e tectónica da ilha do Corvo
(Açores-Portugal): Contributos para o ordenamento do espaço
físico, Tese de Mestrado, Universidade de Coimbra, 2001.
Dietz, R. S. and Menard, H. W.: Origin of Abrupt Change in Slope at
Continental Shelf Margin1, AAPG Bull., 35, 1994–2016,
https://doi.org/10.1306/3D934319-16B1-11D7-8645000102C1865D, 1951.
Earlie, C., Masselink, G., Russell, P., and Shail, R.: Sensitivity analysis
of the methodology for quantifying cliff erosion using airborne
LiDAR–examples from Cornwall, UK, J. Coastal. Res., 470–475, 2013.
Favalli, M., Karátson, D., Yepes, J., and Nannipieri, L.: Surface
fitting in geomorphology – Examples for regular-shaped volcanic landforms,
Geomorphology, 221, 139–149,
https://doi.org/10.1016/j.geomorph.2014.06.009, 2014.
Feraud, G., Kaneoka, I., and Allègre, C. J.: K/Ar ages and stress pattern
in the Azores: Geodynamic implications, Earth Planet. Sc. Lett., 46,
275–286, https://doi.org/10.1016/0012-821X(80)90013-8, 1980.
Ferrer-Valero, N. and Hernández-Calvento, L.: Coastal geomorphic
chronosequences across broad spatiotemporal scales. Metrical observations
from the Cape Verde hotspot, Earth Surf. Proc. Land., 45, 511–525,
https://doi.org/10.1002/esp.4738, 2020.
França, Z., Nunes, J., Cruz, J., Duarte, J. F., and Forjaz, V.-H.:
Preliminary study of the Corvo Island volcanism, Azores, 3∘ Assem.
Luso-Esp. Geod. E Geofísica, S09, 727–730, 2002.
França, Z., Lago San José, M., Nunes, J., Gale, C., Forjaz, V.-H.,
Anchuela, O., and Arranz Yagüe, E.: Geochemistry of alkaline basalts of
Corvo Island (Azores, Portugal): Preliminary data, Geogaceta, 40, 87–90,
2006.
Gee, M. J. R., Watts, A. B., Masson, D. G., and Mitchell, N. C.: Landslides
and the evolution of El Hierro in the Canary Islands, Mar. Geol.,
177, 271–293, https://doi.org/10.1016/S0025-3227(01)00153-0, 2001.
Germa, A., Quidelleur, X., Labanieh, S., Lahitte, P., and Chauvel, C.: The
eruptive history of Morne Jacob volcano (Martinique Island, French West
Indies): Geochronology, geomorphology and geochemistry of the earliest
volcanism in the recent Lesser Antilles arc, J. Volcanol. Geoth. Res.,
198, 297–310, https://doi.org/10.1016/j.jvolgeores.2010.09.013, 2010.
Germa, A., Lahitte, P., and Quidelleur, X.: Construction and destruction of
Mont Pelée volcano: Volumes and rates constrained from a
geomorphological model of evolution, J. Geophys. Res.-Earth, 120,
1206–1226, https://doi.org/10.1002/2014JF003355, 2015.
Hildenbrand, A., Gillot, P.-Y., and Marlin, C.: Geomorphological study of
long-term erosion on a tropical volcanic ocean island: Tahiti-Nui (French
Polynesia), Geomorphology 93, 460–481,
https://doi.org/10.1016/j.geomorph.2007.03.012, 2008.
Holcomb, R. T. and Searle, R. C.: Large landslides from oceanic volcanoes,
Mar. Georesources Geotechnol., 10, 19–32, 1991.
Huggett, R.: Fundamentals of Geomorphology, 2nd ed., Routledge,
https://doi.org/10.4324/9781315674179, 2008.
Huppert, K. L., Perron, J. T., and Ashton, A. D.: The influence of wave power
on bedrock sea-cliff erosion in the Hawaiian Islands, Geology, 48, 499–503,
https://doi.org/10.1130/G47113.1, 2020.
Hurst, M. D., Rood, D. H., Ellis, M. A., Anderson, R. S., and Dornbusch, U.:
Recent acceleration in coastal cliff retreat rates on the south coast of
Great Britain, P. Natl. Acad. Sci. USA, 113, 13336–13341, 2016.
Karátson, D., Favalli, M., Tarquini, S., Fornaciai, A., and Wörner,
G.: The regular shape of stratovolcanoes: A DEM-based morphometrical
approach, J. Volcanol. Geoth. Res., 193, 171–181,
https://doi.org/10.1016/j.jvolgeores.2010.03.012, 2010.
Karátson, D., Yepes, J., Favalli, M., Rodríguez-Peces, M. J., and
Fornaciai, A.: Reconstructing eroded paleovolcanoes on Gran Canaria, Canary
Islands, using advanced geomorphometry, Geomorphology, 253, 123–134,
https://doi.org/10.1016/j.geomorph.2015.10.004, 2016.
Krastel, S., Schmincke, H.-U., and Jacobs, C. L.: Formation of submarine
canyons on the flanks of the Canary Islands, Geo-Mar. Lett., 20, 160–167,
https://doi.org/10.1007/s003670000049, 2001.
Kronberg, B. I.: Weathering dynamics and geosphere mixing with reference to
the potassium cycle, Phys. Earth Planet. In., 41, 125–132,
https://doi.org/10.1016/0031-9201(85)90027-5, 1985.
Lahitte, P., Samper, A., and Quidelleur, X.: DEM-based reconstruction of
southern Basse-Terre volcanoes (Guadeloupe archipelago, FWI): Contribution
to the Lesser Antilles Arc construction rates and magma production,
Geomorphology, 136,
148–164, https://doi.org/10.1016/j.geomorph.2011.04.008, 2012.
Landemaine, V.: Érosion des sols et transferts sédimentaires sur les
bassins versants de l'Ouest du Bassin de Paris: analyse, quantification et
modélisation à l'échelle pluriannuelle, Phd thesis, Normandie
Université, https://hal-normandie-univ.archives-ouvertes.fr/tel-01937208 (last access: 17 March 2022), 2016.
Lavigne, F., Degeai, J.-P., Komorowski, J.-C., Guillet, S., Robert, V.,
Lahitte, P., Oppenheimer, C., Stoffel, M., Vidal, C. M., and Pratomo, I.:
Source of the great AD 1257 mystery eruption unveiled, Samalas volcano,
Rinjani Volcanic Complex, Indonesia, P. Natl. Acad. Sci. USA, 110,
16742–16747, 2013.
Letortu, P., Costa, S., Maquaire, O., Delacourt, C., Augereau, E., Davidson,
R., Suanez, S., and Nabucet, J.: Retreat rates, modalities and agents
responsible for erosion along the coastal chalk cliffs of Upper Normandy:
The contribution of terrestrial laser scanning, Geomorphology, 245, 3–14,
2015.
Marques, F. O., Catalão, J., Hübscher, C., Costa, A. C. G.,
Hildenbrand, A., Zeyen, H., Nomikou, P., Lebas, E., and Zanon, V.: The
shaping of a volcanic ridge in a tectonically active setting: The Pico-Faial
Ridge in the Azores Triple Junction, Geomorphology, 378, 107612,
https://doi.org/10.1016/j.geomorph.2021.107612, 2021.
Martin, J. M. and Whitfield, M.: The Significance of the River Input of
Chemical Elements to the Ocean, in: Trace Metals in Sea Water, edited by: Wong, C. S., Boyle, E., Bruland, K. W.,
Burton, J. D., and Goldberg, E. D., NATO
Conference Series, vol. 9., Springer, Boston, MA,
https://doi.org/10.1007/978-1-4757-6864-0_16, 1983.
Melo, C. S., Ramalho, R. S., Quartau, R., Hipólito, A., Gil, A., Borges,
P. A., Cardigos, F., Ávila, S. P., Madeira, J., and Gaspar, J. L.: Genesis
and morphological evolution of coastal talus-platforms (fajãs) with
lagoons: The case study of the newly-formed Fajã dos Milagres (Corvo
Island, Azores), Geomorphology, 310, 138–152,
https://doi.org/10.1016/j.geomorph.2018.03.006, 2018.
Milliman, J. D. and Farnsworth, K. L.: River discharge to the coastal ocean:
a global synthesis, Cambridge University Press, ISBN 978-0-511-78124-7, 2013.
Milliman, J. D. and Meade, R. H.: World-Wide Delivery of River Sediment to
the Oceans, J. Geol., 91, 1–21,
https://doi.org/10.1086/628741, 1983.
Mitchell, N. C., Masson, D. G., Watts, A. B., Gee, M. J., and Urgeles, R.: The
morphology of the submarine flanks of volcanic ocean islands: A comparative
study of the Canary and Hawaiian hotspot islands, J. Volcanol. Geoth.
Res., 115, 83–107, 2002.
Mitchell, N. C., Dade, W. B., and Masson, D. G.: Erosion of the submarine
flanks of the Canary Islands, J. Geophys. Res., 108, 6002,
https://doi.org/10.1029/2002JF000003, 2003.
Moses, C. and Robinson, D.: Chalk coast dynamics: Implications for
understanding rock coast evolution, Earth-Sci. Rev., 109, 63–73, 2011.
Ng, K., Borges, P., Phillips, M. R., Medeiros, A., and Calado, H.: An
integrated coastal vulnerability approach to small islands: The Azores case,
Sci. Total Environ., 690, 1218–1227,
https://doi.org/10.1016/j.scitotenv.2019.07.013, 2019.
Pacheco, J., Ferreira, T., Queiroz, G., Wallenstein, N., Coutinho, R., Cruz,
J., Pimentel, A., Silva, R., Gaspar, J., and Goulart, C.: Notas sobre a
geologia do arquipélago dos Açores, in: Geologia de Portugal,
596–690, https://www.researchgate.net/profile/Jose-Pacheco/publication/256986277_Notas_sobre_a_geologia_do_arquipelago_dos_Acores/links/00b7d528e36de0c206000000/Notas-sobre-a-geologia-do-arquipelago-dos-Acores.pdf (last access: 17 March 2022), 2013.
Peterson, D. W. and Moore, R. B.: Geologic history and evolution of geologic
concepts, in: Island of Hawaii, 149–189, https://books.google.fr/books?id=XX3WTHltZRIC (last access: 17 March 2022), 1987.
Prémaillon, M., Regard, V., Dewez, T. J. B., and Auda, Y.: GlobR2C2 (Global Recession Rates of Coastal Cliffs): a global relational database to investigate coastal rocky cliff erosion rate variations, Earth Surf. Dynam., 6, 651–668, https://doi.org/10.5194/esurf-6-651-2018, 2018.
Prémaillon, M., Dewez, T. J. B., Regard, V., Rosser, N. J., Carretier, S.,
and Guillen, L.: Conceptual model of fracture-limited sea cliff erosion:
Erosion of the seaward tilted flyschs of Socoa, Basque Country, France,
Earth Surf. Proc. Land., 46, 2690–2709,
https://doi.org/10.1002/esp.5201, 2021.
Pueyo Anchuela, Ó., Gil Imaz, A., Lago San José, M., França, Z.,
and Galé, C.: Magma flow directions in Azores basaltic dykes from AMS
data: preliminary results from Corvo island, Geogaceta, 40, 83–86, 2006.
Quartau, R. and Mitchell, N. C.: Comment on “Reconstructing the
architectural evolution of volcanic islands from combined K/Ar, morphologic,
tectonic, and magnetic data: The Faial Island example (Azores)” by
Hildenbrand et al. (2012) [J. Volcanol. Geotherm. Res. 241–242 (2012)
39–48], J. Volcanol. Geotherm. Res., 255, 124–126, 2013.
Quartau, R., Trenhaile, A. S., Mitchell, N. C., and Tempera, F.: Development
of volcanic insular shelves: Insights from observations and modelling of
Faial Island in the Azores Archipelago, Mar. Geol., 275, 66–83,
https://doi.org/10.1016/j.margeo.2010.04.008, 2010.
Quartau, R., Tempera, F., Mitchell, N. C., Pinheiro, L. M., Duarte, H., Brito,
P. O., Bates, C. R., and Monteiro, J. H.: Morphology of the Faial Island shelf
(Azores): The interplay between volcanic, erosional, depositional, tectonic
and mass-wasting processes, Geochem. Geophy. Geosy., 13, Q04012,
https://doi.org/10.1029/2011GC003987, 2012.
Quartau, R., Hipólito, A., Romagnoli, C., Casalbore, D., Madeira, J.,
Tempera, F., Roque, C., and Chiocci, F.L.: The morphology of insular shelves
as a key for understanding the geological evolution of volcanic islands:
Insights from Terceira Island (Azores), Geochem. Geophy. Geosy., 15,
1801–1826, https://doi.org/10.1002/2014GC005248, 2014.
Quartau, R., Madeira, J., Mitchell, N.C., Tempera, F., Silva, P.F., and
Brandão, F.: The insular shelves of the Faial-Pico Ridge: a
morphological record of its geologic evolution (Azores archipelago),
Geochem. Geophy. Geosy., 16, 1401–1420,
https://doi.org/10.1002/2015GC005733, 2015.
Quartau, R., Ramalho, R. S., Madeira, J., Santos, R., Rodrigues, A., Roque,
C., Carrara, G., and Brum da Silveira, A.: Gravitational, erosional and
depositional processes on volcanic ocean islands: Insights from the
submarine morphology of Madeira archipelago, Earth Planet. Sc. Lett., 482,
288–299, https://doi.org/10.1016/j.epsl.2017.11.003, 2018.
Rachold, V., Grigoriev, M. N., Are, F. E., Solomon, S., Reimnitz, E., Kassens,
H., and Antonow, M.: Coastal erosion vs riverine sediment discharge in the
Arctic Shelf seas, Int. J. Earth Sci., 89, 450–460, 2000.
Raimbault, C., Duperret, A., Regard, V., Molliex, S., Wyns, R., Authemayou,
C., and Le Gall, B.: Quaternary geomorphological evolution of a granitic
shore platform constrained by in situ 10Be concentrations, Penmarc'h, SW
Brittany, France, Mar. Geol., 395, 33–47, 2018.
Ramalho, R. S., Quartau, R., Trenhaile, A. S., Mitchell, N. C., Woodroffe,
C. D., and Ávila, S. P.: Coastal evolution on volcanic oceanic islands: A
complex interplay between volcanism, erosion, sedimentation, sea-level
change and biogenic production, Earth-Sci. Rev., 127, 140–170,
https://doi.org/10.1016/j.earscirev.2013.10.007, 2013.
Ramalho, R. S., Helffrich, G., Madeira, J., Cosca, M., Thomas, C., Quartau,
R., Hipólito, A., Rovere, A., Hearty, P. J., and Ávila, S. P.:
Emergence and evolution of Santa Maria Island (Azores) –The conundrum of
uplifted islands revisited, GSA Bulletin, 129, 372–390,
https://doi.org/10.1130/B31538.1, 2017.
Raymo, M. E., Ruddiman, W. F., and Froelich, P. N.: Influence of late Cenozoic
mountain building on ocean geochemical cycles, Geology, 16, 649–653,
https://doi.org/10.1130/0091-7613(1988)016<0649:IOLCMB>2.3.CO;2, 1988.
Regard, V., Dewez, T., Bourlès, D. L., Anderson, R. S., Duperret, A.,
Costa, S., Leanni, L., Lasseur, E., Pedoja, K., and Maillet, G. M.: Late
Holocene seacliff retreat recorded by 10Be profiles across a coastal
platform: theory and example from the English Channel, Quat. Geochronol.,
11, 87–97, https://doi.org/10.1016/j.quageo.2012.02.027, 2012.
Regard, V., Prémaillon, M., Dewez, T. J. B., Carretier, S., Jeandel, C.,
Godderis, Y., Bonnet, S., Schott, J., Pedoja, K., Martinod, J., Viers, J.,
and Fabre, S.: Rock coast erosion: An overlooked source of sediments to the
ocean. Europe as an example, Earth Planet. Sc. Lett., 579, 117356,
https://doi.org/10.1016/j.epsl.2021.117356, 2022.
Ricchi, A., Quartau, R., Ramalho, R. S., Romagnolia, C., Casalbore, D., and
Zhao, Z.: Imprints of volcanic, erosional, depositional, tectonic and
mass-wasting processes in the morphology of Santa Maria insular shelf
(Azores), Mar. Geol., 424, 106163,
https://doi.org/10.1016/j.margeo.2020.106163, 2020.
Ricci, J., Lahitte, P., and Quidelleur, X.: Construction and destruction
rates of volcanoes within tropical environment: Examples from the
Basse-Terre Island (Guadeloupe, Lesser Antilles), Geomorphology, 228,
597–607, https://doi.org/10.1016/j.geomorph.2014.10.002, 2015a.
Ricci, J., Quidelleur, X., and Lahitte, P.: Volcanic evolution of central
Basse-Terre Island revisited on the basis of new geochronology and
geomorphology data, Bull. Volcanol., 77, 1–17, 2015b.
Rohling, E. J., Grant, K., Bolshaw, M., Roberts, A. P., Siddall, M., Hemleben,
C., and Kucera, M.: Antarctic temperature and global sea level closely
coupled over the past five glacial cycles, Nat. Geosci., 2, 500–504, 2009.
Rosser, N. J., Brain, M. J., Petley, D. N., Lim, M., and Norman, E. C.:
Coastline retreat via progressive failure of rocky coastal cliffs, Geology,
41, 939–942, 2013.
Rusu, L. and Guedes Soares, C.: Wave energy assessments in the Azores
islands, Renew. Energ., 45, 183–196,
https://doi.org/10.1016/j.renene.2012.02.027, 2012.
Salvany, T., Lahitte, P., Nativel, P., and Gillot, P.-Y.: Geomorphic
evolution of the Piton des Neiges volcano (Réunion Island, Indian
Ocean): competition between volcanic construction and erosion since 1.4 Ma,
Geomorphology, 136, 132–147, 2012.
Schlünz, B. and Schneider, R.: Transport of terrestrial organic carbon
to the oceans by rivers: re-estimating flux- and burial rates, Int. J.
Earth Sci., 88, 599–606, https://doi.org/10.1007/s005310050290, 2000.
Shackleton, N. J.: The 100,000-year ice-age cycle identified and found to lag
temperature, carbon dioxide, and orbital eccentricity, Science, 289,
1897–1902, 2000.
Shepard, F. P.: Submarine Geology, 3d edition, Harper & Row, New York,
517 pp., ISBN 10 0060460911, 1973.
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016.
Sterl, A. and Caires, S.: Climatology, variability and extrema of ocean waves: the Web-based KNMI/ERA-40 wave atlas, Int. J. Climatol., 25, 963–977, https://doi.org/10.1002/joc.1175, 2005.
Sunamura, T.: Geomorphology of rocky coasts, Wiley, ISBN 0 471 91775 3, 1992.
Sunamura, T.: A model for wave abrasion on underwater bedrock, with an
application to rapidly downwearing tephra cones adjacent to Surtsey Island
in Iceland, Earth Surf. Proc. Land., 46, 1600–1609,
https://doi.org/10.1002/esp.5128, 2021.
Syvitski, J. P. M., Peckham, S. D., Hilberman, R., and Mulder, T.: Predicting
the terrestrial flux of sediment to the global ocean: A planetary
perspective, Sediment. Geol., 162, 5–23,
https://doi.org/10.1016/S0037-0738(03)00232-X, 2003.
Thierry, S., Dick, S., George, S., Benoit L., and Cyrille, P.: EMODnet Bathymetry a compilation of bathymetric data in the European waters, OCEANS 2019 – Marseille, Marseille, France, 1–7, https://doi.org/10.1109/OCEANSE.2019.8867250, 2019 (data available at: https://portal.emodnet-bathymetry.eu, last access: 17 March 2022).
Torrecillas, C., Berrocoso, M., Felpeto, A., Torrecillas, M.D., and Garcia,
A.: Reconstructing palaeo-volcanic geometries using a Geodynamic Regression
Model (GRM): Application to Deception Island volcano (South Shetland
Islands, Antarctica), Geomorphology, 182, 79–88,
https://doi.org/10.1016/j.geomorph.2012.10.032, 2013.
Tréguer, P., Nelson, D.M., van Bennekom, A.J., Demaster, D.J., Leynaert,
A., and Quéguiner, B.: The Silica Balance in the World Ocean: A
Reestimate, Science, 268, 375–379,
https://doi.org/10.1126/science.268.5209.375, 1995.
Trenhaile, A. S.: The Shore Platforms of the Vale of Glamorgan, Wales, Trans.
Inst. Br. Geogr., 56, 127–144, https://doi.org/10.2307/621545, 1972.
Trenhaile, A. S. and Bryne, M.-L.: A Theoretical Investigation of the
Holocene Development of Rock Coasts, with Particular Reference to Shore
Platforms, Geogr. A, 68, 1–14,
https://doi.org/10.1080/04353676.1986.11880154, 1986.
Trenhaile, A. S.: Modeling the development of wave-cut shore platforms, Mar.
Geol., 166, 163–178, 2000.
Trenhaile, A. S.: Modelling the Quaternary evolution of shore platforms and
erosional continental shelves, Earth Surf. Proc. Land., 26, 1103–1128, 2001.
Urgeles, R., Masson, D. G., Canals, M., Watts, A. B., and Le Bas, T.:
Recurrent large-scale landsliding on the west flank of La Palma, Canary
Islands. J. Geophys. Res., 104, 25331–25348,
https://doi.org/10.1029/1999JB900243, 1999.
Viers, J., Dupré, B., and Gaillardet, J.: Chemical composition of
suspended sediments in World Rivers: New insights from a new database, Sci.
total Environ., 407, 853–868,
https://doi.org/10.1016/j.scitotenv.2008.09.053, 2009.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.-C., Mcmanus, J.F.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water
temperature changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev., 21, 295–305, 2002.
Welch, R., Jordan, T., Lang, H., and Murakami, H.: ASTER as a source for topographic data in the late 1990s, IEEE T. Geosci. Remote, 36, 1282–1289, https://doi.org/10.1109/36.701078, 1998 (data available at: https://search.earthdata.nasa.gov/search, last access: 17 March 2022).
Wright, L. W.: Variation in the level of the cliff/shore platform junction
along the south coast of Great Britain, Mar. Geol., 9, 347–353,
https://doi.org/10.1016/0025-3227(70)90023-X, 1970.
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., and Fifield, L. K.:
Timing of the Last Glacial Maximum from observed sea-level minima, Nature,
406, 713–716, https://doi.org/10.1038/35021035, 2000.
Young, A. P.: Decadal-scale coastal cliff retreat in southern and central
California, Geomorphology, 300, 164–175, 2018.
Young, A. P. and Carilli, J. E.: Global distribution of coastal cliffs, Earth
Surf. Proc. Land., 44, 1309–1316, 2019.
Young, A. P., Guza, R. T., Matsumoto, H., Merrifield, M. A., O'Reilly, W. C.,
and Swirad, Z. M.: Three years of weekly observations of coastal cliff
erosion by waves and rainfall, Geomorphology, 375, 107545, https://doi.org/10.1016/j.geomorph.2020.107545, 2021.
Zhao, Z., Mitchell, N. C., Quartau, R., Ramalho, R. S., and Rusu, L.:
Coastal erosion rates of lava deltas around oceanic islands, Geomorphology,
370, 107410, https://doi.org/10.1016/j.geomorph.2020.107410, 2020.
Short summary
This study presents a method to calculate the volume of rock eroded by the sea on volcanic islands, by reconstructing their pre-erosion shape and size. The method has been applied on Corvo Island (Azores). We show that before the island was eroded, it was roughly 8 km wide and 1 km high. The island has lost more than 6 km3 of rock and 80 % of its surface. We also show that the erosion of sea cliffs is mainly due to the moderate and most frequent waves.
This study presents a method to calculate the volume of rock eroded by the sea on volcanic...