Articles | Volume 12, issue 4
https://doi.org/10.5194/esurf-12-883-2024
https://doi.org/10.5194/esurf-12-883-2024
Research article
 | 
24 Jul 2024
Research article |  | 24 Jul 2024

Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models

Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere

Related authors

Automated forward and adjoint modelling of viscoelastic deformation of the solid Earth
William Scott, Mark Hoggard, Thomas Duvernay, Sia Ghelichkhan, Angus Gibson, Dale Roberts, Stephan C. Kramer, and D. Rhodri Davies
EGUsphere, https://doi.org/10.5194/egusphere-2025-4168,https://doi.org/10.5194/egusphere-2025-4168, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025,https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Reconciling surface deflections from simulations of global mantle convection
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
Geosci. Model Dev., 17, 9023–9049, https://doi.org/10.5194/gmd-17-9023-2024,https://doi.org/10.5194/gmd-17-9023-2024, 2024
Short summary
Refining patterns of melt with forward stratigraphic models of stable Pleistocene coastlines
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023,https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Modeled storm surge changes in a warmer world: the Last Interglacial
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023,https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary

Cited articles

Abbasi, I. A., Hersi, O. S., Al-Harthy, A., and Al-Rashdi, I.: Lithofacies attributes, depositional system and diagenetic properties of the Permian Gharif Formation from Haushi–Huqf area, Central Oman, Arab. J. Geosci., 6, 4931–4945, https://doi.org/10.1007/s12517-012-0763-7, 2013. 
Argus, D. F., Gordon, R. G., and DeMets, C.: Geologically current motion of 56 plates relative to the no-net-rotation reference frame, Geochem. Geophy. Geosy., 12, Q11001, https://doi.org/10.1029/2011GC003751, 2011. 
Austermann, J. and Mitrovica, J. X.: Calculating gravitationally self-consistent sea level changes driven by dynamic topography, Geophys. J. Int., 203, 1909–1922, https://doi.org/10.1093/gji/ggv371, 2015. 
Austermann, J., Pollard, D., Mitrovica, J. X., Moucha, R., Forte, A. M., DeConto, R. M., Rowley, D. B., and Raymo, M. E.: The impact of dynamic topography change on Antarctic ice sheet stability during the mid-Pliocene warm period, Geology, 43, 927–930, https://doi.org/10.1130/G36988.1, 2015. 
Austermann, J., Mitrovica, J. X., Huybers, P., and Rovere, A.: Detection of a dynamic topography signal in last interglacial sea-level records, Science Advances, 3, e1700457, https://doi.org/10.1126/sciadv.1700457, 2017. 
Download
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Share