Articles | Volume 12, issue 4
https://doi.org/10.5194/esurf-12-883-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-883-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Andrew Hollyday
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
Maureen E. Raymo
Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
Jacqueline Austermann
Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
Fred Richards
Department of Earth Science and Engineering, Imperial College London, London, UK
Mark Hoggard
Research School of Earth Sciences, Australian National University, Canberra, Australia
Alessio Rovere
Department for Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Venice, Italy
MARUM Center for Maine Environmental Services, Universität Bremen, Bremen, Germany
Related authors
No articles found.
William Scott, Mark Hoggard, Thomas Duvernay, Sia Ghelichkhan, Angus Gibson, Dale Roberts, Stephan C. Kramer, and D. Rhodri Davies
EGUsphere, https://doi.org/10.5194/egusphere-2025-4168, https://doi.org/10.5194/egusphere-2025-4168, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Melting ice sheets drive solid Earth deformation and sea-level change on timescales of decades to thousands of years. Here, we present G-ADOPT, which models movement of the solid Earth in response to surface loads. It has flexibility in domain geometry, deformation mechanism parameterisation, and is scalable on high performance computers. Automatic derivation of adjoint sensitivity kernels also provides a means to assimilate historical and modern observations into future sea-level forecasts.
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025, https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Short summary
We present the Water Table Model (WTM), a new model for simulating groundwater and lake levels at continental scales over millennia. The WTM enables long-term evaluations of water-table changes. As a proof of concept, we simulate the North American water table for the present and the Last Glacial Maximum (LGM), showing that North America held more groundwater and lake water during the LGM than it does today – enough to lower sea levels by 14.98 cm. The open-source code is available on GitHub.
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
Geosci. Model Dev., 17, 9023–9049, https://doi.org/10.5194/gmd-17-9023-2024, https://doi.org/10.5194/gmd-17-9023-2024, 2024
Short summary
Short summary
We wish to understand how the history of flowing rock within Earth's interior impacts deflection of its surface. Observations exist to address this problem, and mathematics and different computing tools can be used to predict histories of flow. We explore how modeling choices impact calculated vertical deflections. The sensitivity of vertical motions at Earth's surface to deep flow is assessed, demonstrating how surface observations can enlighten flow histories.
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023, https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Alessio Rovere, Deirdre D. Ryan, Matteo Vacchi, Andrea Dutton, Alexander R. Simms, and Colin V. Murray-Wallace
Earth Syst. Sci. Data, 15, 1–23, https://doi.org/10.5194/essd-15-1-2023, https://doi.org/10.5194/essd-15-1-2023, 2023
Short summary
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
Karla Rubio-Sandoval, Alessio Rovere, Ciro Cerrone, Paolo Stocchi, Thomas Lorscheid, Thomas Felis, Ann-Kathrin Petersen, and Deirdre D. Ryan
Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, https://doi.org/10.5194/essd-13-4819-2021, 2021
Short summary
Short summary
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level. For this reason, scientists use it as an analog for future climatic conditions. In this paper, we use the World Atlas of Last Interglacial Shorelines database to standardize LIG sea-level data along the coasts of the western Atlantic and mainland Caribbean, identifying 55 unique sea-level indicators.
Ciro Cerrone, Matteo Vacchi, Alessandro Fontana, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4485–4527, https://doi.org/10.5194/essd-13-4485-2021, https://doi.org/10.5194/essd-13-4485-2021, 2021
Short summary
Short summary
The paper is a critical review and standardization of 199 published scientific papers to compile a Last Interglacial sea-level database for the Western Mediterranean sector. In the database, 396 sea-level data points associated with 401 dated samples are included. The relative sea-level data points and associated ages have been ranked on a 0 to 5 scale score.
Kathrine Maxwell, Hildegard Westphal, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4313–4329, https://doi.org/10.5194/essd-13-4313-2021, https://doi.org/10.5194/essd-13-4313-2021, 2021
Short summary
Short summary
Marine Isotope Stage 5e (MIS 5e; the Last Interglacial, 125 ka) represents a period in the Earth’s geologic history when sea level was higher than present. In this paper, a standardized database was produced after screening and reviewing LIG sea-level data from published papers in Southeast Asia. We identified 43 unique sea-level indicators (42 from coral reef terraces and 1 from a tidal notch) and compiled the data in the World Atlas of Last Interglacial Shorelines (WALIS).
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, https://doi.org/10.5194/essd-13-1633-2021, 2021
Short summary
Short summary
Sea levels during the last interglacial (130 to 73 ka) are seen as possible process analogs for future sea-level-rise scenarios as our world warms. To this end we catalog previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Evan J. Gowan, Alessio Rovere, Deirdre D. Ryan, Sebastian Richiano, Alejandro Montes, Marta Pappalardo, and Marina L. Aguirre
Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021, https://doi.org/10.5194/essd-13-171-2021, 2021
Short summary
Short summary
During the last interglacial (130 to 115 ka), global sea level was higher than present. The World Atlas of Last Interglacial Shorelines (WALIS) has been created to document this. In this paper, we have compiled data for southeastern South America. There are landforms that indicate that sea level was 5 to 25 m higher than present during this time period. However, the quality of these data is hampered by limitations on elevation measurements, chronology, and geological descriptions.
Cited articles
Abbasi, I. A., Hersi, O. S., Al-Harthy, A., and Al-Rashdi, I.: Lithofacies attributes, depositional system and diagenetic properties of the Permian Gharif Formation from Haushi–Huqf area, Central Oman, Arab. J. Geosci., 6, 4931–4945, https://doi.org/10.1007/s12517-012-0763-7, 2013.
Argus, D. F., Gordon, R. G., and DeMets, C.: Geologically current motion of 56 plates relative to the no-net-rotation reference frame, Geochem. Geophy. Geosy., 12, Q11001, https://doi.org/10.1029/2011GC003751, 2011.
Austermann, J. and Mitrovica, J. X.: Calculating gravitationally self-consistent sea level changes driven by dynamic topography, Geophys. J. Int., 203, 1909–1922, https://doi.org/10.1093/gji/ggv371, 2015.
Austermann, J., Pollard, D., Mitrovica, J. X., Moucha, R., Forte, A. M., DeConto, R. M., Rowley, D. B., and Raymo, M. E.: The impact of dynamic topography change on Antarctic ice sheet stability during the mid-Pliocene warm period, Geology, 43, 927–930, https://doi.org/10.1130/G36988.1, 2015.
Austermann, J., Mitrovica, J. X., Huybers, P., and Rovere, A.: Detection of a dynamic topography signal in last interglacial sea-level records, Science Advances, 3, e1700457, https://doi.org/10.1126/sciadv.1700457, 2017.
Bamber, J. L., Riva, R. E. M., Vermeersen, B. L. A., and LeBrocq, A. M.: Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet, Science, 324, 901–903, https://doi.org/10.1126/science.1169335, 2009.
Bangerth, W., Dannberg, J., Gassmoeller, R., Heister, T., and others: ASPECT: Advanced Solver for Problems in Earth's ConvecTion, User Manual, https://doi.org/10.6084/m9.figshare.4865333.v7, 2020.
Bangerth, W., Dannberg, J., Gassmoeller, R., and Heister, T.: ahollyday/aspect: DT and convection code, Zenodo [code], https://doi.org/10.5281/zenodo.12774320, 2024.
Beydoun, Z. R. and Bichan, H. R.: The geology of Socotra Island, Gulf of Aden, Quarterly Journal of the Geological Society, 125, 413–441, https://doi.org/10.1144/gsjgs.125.1.0413, 1969.
Bierman, P. R., Shakun, J. D., Corbett, L. B., Zimmerman, S. R., and Rood, D. H.: A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years, Nature, 540, 256–260, https://doi.org/10.1038/nature20147, 2016.
Birse, A. C. R., Bott, W. F., Morrison, J., and Samuel, M. A.: The Mesozoic and early tertiary tectonic evolution of the Socotra area, eastern Gulf of Aden, Yemen, Mar. Petrol. Geol., 14, 675–684, https://doi.org/10.1016/S0264-8172(96)00043-8, 1997.
Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., and Otto-Bliesner, B. L.: Pliocene and Eocene provide best analogs for near-future climates, P. Natl. Acad. Sci. USA, 115, 13288–13293, https://doi.org/10.1073/pnas.1809600115, 2018.
Colli, L., Ghelichkhan, S., Bunge, H.-P., and Oeser, J.: Retrodictions of Mid Paleogene mantle flow and dynamic topography in the Atlantic region from compressible high resolution adjoint mantle convection models: Sensitivity to deep mantle viscosity and tomographic input model, Gondwana Res., 53, 252–272, https://doi.org/10.1016/j.gr.2017.04.027, 2018.
Czarnota, K., Hoggard, M. J., White, N., and Winterbourne, J.: Spatial and temporal patterns of Cenozoic dynamic topography around Australia, Geochem. Geophy. Geosy., 14, 634–658, https://doi.org/10.1029/2012GC004392, 2013.
Dandouau, A.: Géographie de Madagascar, Larose, Paris, 243 pp., https://books.google.com/books?hl=en&lr=&id=eMqBAAAAIAAJ&oi=fnd&pg=PA1&dq=Dandouau,+A.:+G%C3%A9ographie+de+Madagascar,+Larose,+Paris,+243+pp.,+TS13+,+1922.&ots=5tfmqPlwuI&sig=Nt95kw93KWiIIJsA-w00Y6wAGq0#v=onepage&q&f=false (last access: 19 July 2024), 1922.
Davis, W. M.: Glacial Epochs of the Santa Monica Mountains, California, GSA Bulletin, 44, 1041–1133, https://doi.org/10.1130/GSAB-44-1041, 1933.
DeConto, R. M., Pollard, D., Alley, R. B., Velicogna, I., Gasson, E., Gomez, N., Sadai, S., Condron, A., Gilford, D. M., Ashe, E. L., Kopp, R. E., Li, D., and Dutton, A.: The Paris Climate Agreement and future sea-level rise from Antarctica, Nature, 593, 83–89, https://doi.org/10.1038/s41586-021-03427-0, 2021.
Dowsett, H. J. and Cronin, T. M.: High eustatic sea level during the middle Pliocene:Evidence from the southeastern U. S. Atlantic Coastal Plain, Geology, 18, 435–438, https://doi.org/10.1130/0091-7613(1990)018<0435:HESLDT>2.3.CO;2, 1990.
Dumitru, O. A., Austermann, J., Polyak, V. J., Fornós, J. J., Asmerom, Y., Ginés, J., Ginés, A., and Onac, B. P.: Constraints on global mean sea level during Pliocene warmth, Nature, 574, 233–236, https://doi.org/10.1038/s41586-019-1543-2, 2019.
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R., Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.: Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature, 566, 58–64, https://doi.org/10.1038/s41586-019-0901-4, 2019.
Eisma, D. and Van Bennekom, A. J.: The Zaire river and estuary and the Zaire outflow in the Atlantic ocean, Neth. J. Sea Res., 12, 255–272, https://doi.org/10.1016/0077-7579(78)90030-3, 1978.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Farrell, W. E. and Clark, J. A.: On Postglacial Sea Level, Geophys. J. Int., 46, 647–667, https://doi.org/10.1111/j.1365-246X.1976.tb01252.x, 1976.
Fedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., and Ravelo, A. C.: Patterns and mechanisms of early Pliocene warmth, Nature, 496, 43–49, https://doi.org/10.1038/nature12003, 2013.
Fiduk, J. C.: Evaporites, petroleum exploration, and the Cenozoic evolution of the Libyan shelf margin, central North Africa, Mar. Petrol. Geol., 26, 1513–1527, https://doi.org/10.1016/j.marpetgeo.2009.04.006, 2009.
Fischer, H., Meissner, K. J., Mix, A. C., Abram, N. J., Austermann, J., Brovkin, V., Capron, E., Colombaroli, D., Daniau, A.-L., Dyez, K. A., Felis, T., Finkelstein, S. A., Jaccard, S. L., McClymont, E. L., Rovere, A., Sutter, J., Wolff, E. W., Affolter, S., Bakker, P., Ballesteros-Cánovas, J. A., Barbante, C., Caley, T., Carlson, A. E., Churakova (Sidorova), O., Cortese, G., Cumming, B. F., Davis, B. A. S., de Vernal, A., Emile-Geay, J., Fritz, S. C., Gierz, P., Gottschalk, J., Holloway, M. D., Joos, F., Kucera, M., Loutre, M.-F., Lunt, D. J., Marcisz, K., Marlon, J. R., Martinez, P., Masson-Delmotte, V., Nehrbass-Ahles, C., Otto-Bliesner, B. L., Raible, C. C., Risebrobakken, B., Sánchez Goñi, M. F., Arrigo, J. S., Sarnthein, M., Sjolte, J., Stocker, T. F., Velasquez Alvárez, P. A., Tinner, W., Valdes, P. J., Vogel, H., Wanner, H., Yan, Q., Yu, Z., Ziegler, M., and Zhou, L.: Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond, Nat. Geosci., 11, 474–485, https://doi.org/10.1038/s41561-018-0146-0, 2018.
Flament, N., Gurnis, M., and Müller, R. D.: A review of observations and models of dynamic topography, Lithosphere, 5, 189–210, https://doi.org/10.1130/L245.1, 2013.
Fletcher, I. R., Wilde, S. A., and Rosman, K. J. R.: Sm-Nd model ages across the margins of the Archaean Yilgarn Block, Western Australia – III. The western margin, Aust. J. Earth Sci., 32, 73–82, https://doi.org/10.1080/08120098508729314, 1985.
Fournier, M., Patriat, P., and Leroy, S.: Reappraisal of the Arabia–India–Somalia triple junction kinematics, Earth Planet. Sc. Lett., 189, 103–114, https://doi.org/10.1016/S0012-821X(01)00371-5, 2001.
Fournier, M., Bellahsen, N., Fabbri, O., and Gunnell, Y.: Oblique rifting and segmentation of the NE Gulf of Aden passive margin, Geochem. Geophy. Geosy., 5, Q11005, https://doi.org/10.1029/2004GC000731, 2004.
Fournier, M., Chamot-Rooke, N., Petit, C., Huchon, P., Al-Kathiri, A., Audin, L., Beslier, M.-O., d'Acremont, E., Fabbri, O., Fleury, J.-M., Khanbari, K., Lepvrier, C., Leroy, S., Maillot, B., and Merkouriev, S.: Arabia-Somalia plate kinematics, evolution of the Aden-Owen-Carlsberg triple junction, and opening of the Gulf of Aden, J. Geophys. Res.-Sol. Ea., 115, B04102, https://doi.org/10.1029/2008JB006257, 2010.
GEBCO Compilation Group: GEBCO 2023 Grid, https://doi.org/10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b, 2023.
Ghelichkhan, S., Bunge, H.-P., and Oeser, J.: Global mantle flow retrodictions for the early Cenozoic using an adjoint method: evolving dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses, Geophys. J. Int., 226, 1432–1460, https://doi.org/10.1093/gji/ggab108, 2021.
Glišović, P. and Forte, A. M.: Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions, Geosci. Front., 6, 3–22, https://doi.org/10.1016/j.gsf.2014.05.004, 2015.
Grand, S. P.: Mantle shear-wave tomography and the fate of subducted slabs, Philos. T. Roy. Soc. A, 360, 2475–2491, https://doi.org/10.1098/rsta.2002.1077, 2002.
Grant, G. R., Naish, T. R., Dunbar, G. B., Stocchi, P., Kominz, M. A., Kamp, P. J. J., Tapia, C. A., McKay, R. M., Levy, R. H., and Patterson, M. O.: The amplitude and origin of sea-level variability during the Pliocene epoch, Nature, 574, 237–241, https://doi.org/10.1038/s41586-019-1619-z, 2019.
Grant, K. M., Rohling, E. J., Ramsey, C. B., Cheng, H., Edwards, R. L., Florindo, F., Heslop, D., Marra, F., Roberts, A. P., Tamisiea, M. E., and Williams, F.: Sea-level variability over five glacial cycles, Nat. Commun., 5, 5076, https://doi.org/10.1038/ncomms6076, 2014.
Graybill, E. A., Harris, P. T., Kelley, P., and Dietl, D. P.: Age of the Duplin and Waccamaw Formations, Cape Fear River Basin, North Carolina, GSA Southeastern Section – 58th Annual Meeting, 12–13 March 2009, Mobile, AL, USA, 2009.
Grosjean, E., Love, G. D., Stalvies, C., Fike, D. A., and Summons, R. E.: Origin of petroleum in the Neoproterozoic–Cambrian South Oman Salt Basin, Org. Geochem., 40, 87–110, https://doi.org/10.1016/j.orggeochem.2008.09.011, 2009.
Guiraud, M., Buta-Neto, A., and Quesne, D.: Segmentation and differential post-rift uplift at the Angola margin as recorded by the transform-rifted Benguela and oblique-to-orthogonal-rifted Kwanza basins, Mar. Petrol. Geol., 27, 1040–1068, https://doi.org/10.1016/j.marpetgeo.2010.01.017, 2010.
Hallett, D.: Petroleum Geology of Libya, 2nd Edn., https://doi.org/10.1016/B978-0-444-50525-5.X5000-8, 2002.
Hanna, S. S.: The Alpine deformation of the Central Oman Mountains, Geological Society, London, Special Publications, 49, 341–359, https://doi.org/10.1144/GSL.SP.1992.049.01.21, 1990.
Haywood, A. M., Hill, D. J., Dolan, A. M., Otto-Bliesner, B. L., Bragg, F., Chan, W.-L., Chandler, M. A., Contoux, C., Dowsett, H. J., Jost, A., Kamae, Y., Lohmann, G., Lunt, D. J., Abe-Ouchi, A., Pickering, S. J., Ramstein, G., Rosenbloom, N. A., Salzmann, U., Sohl, L., Stepanek, C., Ueda, H., Yan, Q., and Zhang, Z.: Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project, Clim. Past, 9, 191–209, https://doi.org/10.5194/cp-9-191-2013, 2013.
Hearty, P. J., Rovere, A., Sandstrom, M. R., O'Leary, M. J., Roberts, D., and Raymo, M. E.: Pliocene-Pleistocene Stratigraphy and Sea-Level Estimates, Republic of South Africa With Implications for a 400 ppmv CO2 World, Paleoceanography and Paleoclimatology, 35, e2019PA003835, https://doi.org/10.1029/2019PA003835, 2020.
Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W.: High accuracy mantle convection simulation through modern numerical methods – II: realistic models and problems, Geophys. J. Int., 210, 833–851, https://doi.org/10.1093/gji/ggx195, 2017.
Hoggard, M. J., White, N., and Al-attar, D.: Global dynamic topography observations reveal limited influence of large-scale mantle flow, Nat. Geosci., 9, 456–463, https://doi.org/10.1038/ngeo2709, 2016.
Hoggard, M. J., Winterbourne, J., Czarnota, K., and White, N.: Oceanic residual depth measurements, the plate cooling model, and global dynamic topography, J. Geophys. Res.-Sol. Ea., 122, 2328–2372, https://doi.org/10.1002/2016JB013457, 2017.
Hollyday, A.: Pliocene shorelines and the epeirogenic motion of continental margins: A target dataset for dynamic topography models, Zenodo [data set], https://doi.org/10.5281/zenodo.11508207, 2024.
Hollyday, A., Austermann, J., Lloyd, A., Hoggard, M., Richards, F., and Rovere, A.: A Revised Estimate of Early Pliocene Global Mean Sea Level Using Geodynamic Models of the Patagonian Slab Window, Geochem. Geophy. Geosy., 24, e2022GC010648, https://doi.org/10.1029/2022GC010648, 2023a.
Hollyday, A., Austermann, J., Lloyd, A., Hoggard, M., Richards, F., and Rovere, A.: A revised estimate of early Pliocene global mean sea level using geodynamic models of the Patagonian slab window, Zenodo [data set], https://doi.org/10.5281/zenodo.7508208, 2023b.
Huddlestun, P. F.: A revision of the lithostratigraphic units of the coastal plain of Georgia: the Miocene through Holocene, Environmental Protection Division, Georgia Department of Natural Resources, https://epd.georgia.gov/sites/epd.georgia.gov/files/related_files/site_page/B-105.pdf (last access: 19 July 2024), 1988.
James, N. P. and Bone, Y.: A Late Pliocene–Early Pleistocene, Inner-Shelf, Subtropical, Seagrass-Dominated Carbonate: Roe Calcarenite, Great Australian Bight, Western Australia, Palaios, 22, 343–359, https://doi.org/10.2110/palo.2005.p05-117r, 2007.
James, N. P., Bone, Y., Carter, R. M., and Murray-Wallace, C. V.: Origin of the Late Neogene Roe Plains and their calcarenite veneer: implications for sedimentology and tectonics in the Great Australian Bight, Aust. J. Earth Sci., 53, 407–419, https://doi.org/10.1080/08120090500499289, 2006.
Jara-Muñoz, J., Melnick, D., and Strecker, M. R.: TerraceM: A MATLAB®tool to analyze marine and lacustrine terraces using high-resolution topography, Geosphere, 12, 176–195, https://doi.org/10.1130/GES01208.1, 2016.
Jordan, T. H.: Composition and development of the continental tectosphere, Nature, 274, 544–548, https://doi.org/10.1038/274544a0, 1978.
Kaufman, D. S. and Brigham-Grette, J.: Aminostratigraphic correlations and paleotemperature implications, Pliocene-Pleistocene high-sea-level deposits, northwestern Alaska, Quaternary Sci. Rev., 12, 21–33, https://doi.org/10.1016/0277-3791(93)90046-O, 1993.
Kelsey, H. M.: Geomorphological indicators of past sea levels, in: Handbook of Sea-Level Research, John Wiley & Sons, Ltd, 66–82, https://doi.org/10.1002/9781118452547.ch5, 2015.
Kendrick, G. W., Wyrwoll, K.-H., and Szabo, B. J.: Pliocene-Pleistocene coastal events and history along the western margin of Australia, Quaternary Sci. Rev., 10, 419–439, https://doi.org/10.1016/0277-3791(91)90005-F, 1991.
Kronbichler, M., Heister, T., and Bangerth, W.: High accuracy mantle convection simulation through modern numerical methods, Geophys. J. Int., 191, 12–29, https://doi.org/10.1111/j.1365-246X.2012.05609.x, 2012.
Kumar, A.: Geological and environmental features around Brega region, Libya, Earth Science India (Popular issue), VIII, 1–14, 2015.
Lei, W., Ruan, Y., Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N., and Pugmire, D.: Global adjoint tomography–model GLAD-M25, Geophys. J. Int., 223, 1–21, https://doi.org/10.1093/gji/ggaa253, 2020.
Li, S., Abe, S., Reuning, L., Becker, S., Urai, J. L., and Kukla, P. A.: Numerical modelling of the displacement and deformation of embedded rock bodies during salt tectonics: A case study from the South Oman Salt Basin, Geological Society, London, Special Publications, 363, 503–520, https://doi.org/10.1144/SP363.24, 2012.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lorscheid, T. and Rovere, A.: The indicative meaning calculator – quantification of paleo sea-level relationships by using global wave and tide datasets, Open Geospatial Data, Software and Standards, 4, 10, https://doi.org/10.1186/s40965-019-0069-8, 2019.
Malan, J. A.: Lithostratigraphy of the De Hoopvlei Formation (Bredasdorp Group), South African Committee for Stratigraphy, Vanderbilt University, ISBN 0621141089, https://www.researchgate.net/publication/256843529_Lithostratigraphy_of_the_De_Hoopvlei_Formation_Bredasdorp_Group (last access: 19 July 2024), 1991.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: Climate Change 2021: The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Report of the International Panel on Climate Change, Cambridge University Press, Cambridge, UK, New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021.
McGregor, D. A., Harris, W. B., Dietl, G. P., and Kelley, P.: Strontium isotopic dating of the Waccamaw Formation at ACME, NC, and the Duplin Formation at Tar Heel, NC: A Plio-Pleistocene research progress report, in: Geological Society of America Abstracts with Programs, 4, Geological Society of America, https://gsa.confex.com/gsa/2011SE/webprogram/Paper184320.html (last access: 19 July 2024), 2011.
Moat, J. and Du Puy, D.: Simplified Geology of Madagascar, Royal Botanic Gardens, Kew, https://databasin.org/datasets/1a187e2f29e24e98b2c4d45c109d3bb3/ (last access: 19 July 2024), 2010.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation, Geophys. Res. Lett., 44, 11051–11061, https://doi.org/10.1002/2017GL074954, 2017.
Moucha, R. and Ruetenik, G. A.: Interplay between dynamic topography and flexure along the U. S. Atlantic passive margin: Insights from landscape evolution modeling, Global Planet. Change, 149, 72–78, https://doi.org/10.1016/j.gloplacha.2017.01.004, 2017.
Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. B., Quéré, S., Simmons, N. A., and Grand, S. P.: Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform, Earth Planet. Sc. Lett., 271, 101–108, https://doi.org/10.1016/j.epsl.2008.03.056, 2008.
Moulik, P. and Ekström, G.: An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms, Geophys. J. Int., 199, 1713–1738, https://doi.org/10.1093/gji/ggu356, 2014.
Muhs, D. R.: MIS 5e sea-level history along the Pacific coast of North America, Earth Syst. Sci. Data, 14, 1271–1330, https://doi.org/10.5194/essd-14-1271-2022, 2022.
Nairn, A. E. M. and Stehli, F. G. (Eds.): The Ocean Basins and Margins, Springer US, Boston, MA, https://doi.org/10.1007/978-1-4615-8038-6, 1982.
Ni, S., Tan, E., Gurnis, M., and Helmberger, D.: Sharp Sides to the African Superplume, Science, 296, 1850–1852, https://doi.org/10.1126/science.1070698, 2002.
Peltier, W. R.: Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G (VM2) Model and GRACE, Annu. Rev. Earth Pl. Sc., 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Persits, F. M., Ahlbrandt, T. S., Tuttle, M. L., Charpentier, R. R., Brownfield, M. E., and Takahashi, K. I.: Maps showing geology, oil and gas fields and geological provinces of Africa, Maps showing geology, oil and gas fields and geological provinces of Africa, U. S. Geological Survey, Reston, VA, https://doi.org/10.3133/ofr97470A, 1997.
Péwé, T. L.: Quaternary Geology of Alaska, USGS – US Government Printing Office, 166 pp., https://books.google.com/books?hl=en&lr=&id=x8vgaCX8pFEC&oi=fnd&pg=PA1&dq=P%C3%A9w%C3%A9,+T.+L.:+Quaternary+Geology+of+Alaska,+USGS+%E2%80%93+US+Government+Printing+Office,+166+pp.,+,+1975.&ots=rGY1Jp6JNH&sig=hiZk1c5WE1lKaVhDsBuGZgffWXI#v=onepage&q&f=false (last access: 19 July 2024), 1975.
Pik, R., Bellahsen, N., Leroy, S., Denèle, Y., Razin, P., Ahmed, A., and Khanbari, K.: Structural control of basement denudation during rifting revealed by low-temperature (U–Th–Sm) He thermochronology of the Socotra Island basement – Southern Gulf of Aden margin, Tectonophysics, 607, 17–31, https://doi.org/10.1016/j.tecto.2013.07.038, 2013.
Pirmez, C., Pratson, L. F., and Steckler, M. S.: Clinoform development by advection-diffusion of suspended sediment: Modeling and comparison to natural systems, J. Geophys. Res.-Sol. Ea., 103, 24141–24157, https://doi.org/10.1029/98JB01516, 1998.
Platel, J. P., Philip, J., Bourdillon-de-Grissac, C., Babinot, J. F., Roger, J., and Mercadier, C.: Modalites de la transgression campanienne sur le massif du Haushi-Huqf (Oman); stratigraphie, contexte geodynamique et paleoenvironnements, B. Soc. Geol. Fr., 165, 147–161, 1994.
Raymo, M. E., Mitrovica, J. X., O'Leary, M. J., DeConto, R. M., and Hearty, P. J.: Departures from eustasy in Pliocene sea-level records, Nat. Geosci., 4, 328–332, https://doi.org/10.1038/ngeo1118, 2011.
Raymo, M. E., Kozdon, R., Evans, D., Lisiecki, L., and Ford, H. L.: The accuracy of mid-Pliocene δ18O-based ice volume and sea level reconstructions, Earth-Sci. Rev., 177, 291–302, https://doi.org/10.1016/j.earscirev.2017.11.022, 2018.
Raymond, O., Liu, S., Gallagher, R., Zhang, W., and Highet, L.: Surface Geology of Australia, 1:1 million scale dataset, 2012 edn., 2012.
Richards, F. D., Hoggard, M. J., White, N., and Ghelichkhan, S.: Quantifying the Relationship Between Short-Wavelength Dynamic Topography and Thermomechanical Structure of the Upper Mantle Using Calibrated Parameterization of Anelasticity, J. Geophys. Res.-Sol. Ea., 125, e2019JB019062, https://doi.org/10.1029/2019JB019062, 2020.
Richards, F. D., Coulson, S. L., Hoggard, M. J., Austermann, J., Dyer, B., and Mitrovica, J. X.: Geodynamically corrected Pliocene shoreline elevations in Australia consistent with midrange projections of Antarctic ice loss, Science Advances, 9, eadg3035, https://doi.org/10.1126/sciadv.adg3035, 2023a.
Richards, F. D., Hoggard, M. J., Ghelichkhan, S., Koelemeijer, P., and Lau, H. C. P.: Geodynamic, geodetic, and seismic constraints favour deflated and dense-cored LLVPs, Earth Planet. Sc. Lett., 602, 117964, https://doi.org/10.1016/j.epsl.2022.117964, 2023b.
Ries, A. C. and Shackleton, R. M.: Structures in the Huqf-Haushi Uplift, east Central Oman, Geological Society, London, Special Publications, 49, 653–663, https://doi.org/10.1144/GSL.SP.1992.049.01.39, 1990.
Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H.: S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., 184, 1223–1236, https://doi.org/10.1111/j.1365-246X.2010.04884.x, 2011.
Roberts, G. G. and White, N.: Estimating uplift rate histories from river profiles using African examples, J. Geophys. Res.-Sol. Ea., 115, B02406, https://doi.org/10.1029/2009JB006692, 2010.
Robertson, A. H. F., Searle, M. P., and Ries, A. C. (Eds.): The geology and tectonics of the Oman Region, Geological Society, London, 845 pp., https://doi.org/10.1016/0191-8141(91)90110-5, 1990.
Robinson, N., Regetz, J., and Guralnick, R. P.: EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90 m digital elevation model from fused ASTER and SRTM data, ISPRS J. Photogramm., 87, 57–67, https://doi.org/10.1016/j.isprsjprs.2013.11.002, 2014.
Rodríguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M., Daffer, W., and Hensley, S.: An Assessment of the SRTM Topographic Products, Jet Propulsion Laboratory, https://www.researchgate.net/publication/235704654_An_assessment_of_the_SRTM_topographic_products_Technical_Report_JPL_D-31639 (last access: 19 July 2024), 2005.
Rodríguez, E., Morris, C. S., and Belz, J. E.: A Global Assessment of the SRTM Performance, Photogramm. Eng. Rem. S., 72, 249–260, https://doi.org/10.14358/PERS.72.3.249, 2006.
Rovere, A., Raymo, M. E., Mitrovica, J. X., Hearty, P. J., O'Leary, M. J., and Inglis, J. D.: The Mid-Pliocene sea-level conundrum: Glacial isostasy, eustasy and dynamic topography, Earth Planet. Sc. Lett., 387, 27–33, https://doi.org/10.1016/j.epsl.2013.10.030, 2014.
Rovere, A., Hearty, P. J., Austermann, J., Mitrovica, J. X., Gale, J., Moucha, R., Forte, A. M., and Raymo, M. E.: Mid-Pliocene shorelines of the US Atlantic Coastal Plain – An improved elevation database with comparison to Earth model predictions, Earth-Sci. Rev., 145, 117–131, https://doi.org/10.1016/j.earscirev.2015.02.007, 2015.
Rovere, A., Raymo, M. E., Vacchi, M., Lorscheid, T., Stocchi, P., Gómez-Pujol, L., Harris, D. L., Casella, E., O'Leary, M. J., and Hearty, P. J.: The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world, Earth-Sci. Rev., 159, 404–427, https://doi.org/10.1016/j.earscirev.2016.06.006, 2016.
Schaeffer, A. J. and Lebedev, S.: Global shear speed structure of the upper mantle and transition zone, Geophys. J. Int., 194, 417–449, https://doi.org/10.1093/gji/ggt095, 2013.
Schlüter, T. (Ed.): Socotra (Yemen), in: Geological Atlas of Africa: With Notes on Stratigraphy, Tectonics, Economic Geology, Geohazards and Geosites of Each Country, Springer, Berlin, Heidelberg, 206–207, https://doi.org/10.1007/3-540-29145-8_50, 2006.
Shakun, J. D., Lea, D. W., Lisiecki, L. E., and Raymo, M. E.: An 800 kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling, Earth Planet. Sc. Lett., 426, 58–68, https://doi.org/10.1016/j.epsl.2015.05.042, 2015.
Shennan, I.: Handbook of sea-level research, in: Handbook of Sea-Level Research, John Wiley & Sons, Ltd, 3–25, https://doi.org/10.1002/9781118452547.ch2, 2015.
Simmons, N. A., Forte, A. M., and Grand, S. P.: Thermochemical structure and dynamics of the African superplume, Geophys. Res. Lett., 34, L02301, https://doi.org/10.1029/2006GL028009, 2007.
Simmons, N. A., Forte, A. M., and Grand, S. P.: Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: Implications for the relative importance of thermal versus compositional heterogeneity, Geophys. J. Int., 177, 1284–1304, https://doi.org/10.1111/j.1365-246X.2009.04133.x, 2009.
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016.
Steinberger, B.: Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness, Geophys. J. Int., 205, 604–621, https://doi.org/10.1093/gji/ggw040, 2016.
Tackley, P. J.: Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. In., 171, 7–18, https://doi.org/10.1016/j.pepi.2008.08.005, 2008.
Tawadros, E.: Geology of Egypt and Libya, A. A. Balkema, Rotterdam, Brookfield, 468 pp., ISBN 905809331X, 2001.
Tawadros, E.: Geology of North Africa, CRC Press, 933 pp., https://doi.org/10.1201/b11419, 2011.
Till, A. D., Dumoulin, J. A., Werdon, M. B., and Bleick, H. A.: Preliminary Bedrock Geologic Map of the Seward Peninsula, Alaska, and Accompanying Conodont Data, US Geological Survery Open-File Report, US Geological Survey, https://doi.org/10.3133/ofr20091254, 2009.
Trenhaile, A.: Modelling the effect of Pliocene–Quaternary changes in sea level on stable and tectonically active land masses, Earth Surf. Proc. Land., 39, 1221–1235, https://doi.org/10.1002/esp.3574, 2014.
van de Plassche, O.: Sea-level research: a manual for the collection and evaluation of data: A manual for the collection and evaluation of data, Springer, 631 pp., https://doi.org/10.1007/978-94-009-4215-8, 2013.
Winker, C. D. and Howard, J. D.: Correlation of tectonically deformed shorelines on the southern Atlantic coastal plain, Geology, 5, 123–127, https://doi.org/10.1130/0091-7613(1977)5<123:COTDSO>2.0.CO;2, 1977.
Yamauchi, H. and Takei, Y.: Polycrystal anelasticity at near-solidus temperatures, J. Geophys. Res.-Sol. Ea., 121, 7790–7820, https://doi.org/10.1002/2016JB013316, 2016.
Yang, T. and Gurnis, M.: Dynamic topography, gravity and the role of lateral viscosity variations from inversion of global mantle flow, Geophys. J. Int., 207, 1186–1202, https://doi.org/10.1093/gji/ggw335, 2016.
Zheng, L., Gordon, R. G., and Kreemer, C.: Absolute plate velocities from seismic anisotropy: Importance of correlated errors, J. Geophys. Res.-Sol. Ea., 119, 7336–7352, https://doi.org/10.1002/2013JB010902, 2014.
Zhong, S., Gurnis, M., and Hulbert, G.: Accurate determination of surface normal stress in viscous flow from a consistent boundary flux method, Phys. Earth Planet. In., 78, 1–8, https://doi.org/10.1016/0031-9201(93)90078-N, 1993.
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The...