Articles | Volume 7, issue 4
https://doi.org/10.5194/esurf-7-929-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-7-929-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstruction of river valley evolution before and after the emplacement of the giant Seymareh rock avalanche (Zagros Mts., Iran)
Michele Delchiaro
CORRESPONDING AUTHOR
Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
Marta Della Seta
Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
Salvatore Martino
Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
Maryam Dehbozorgi
Department of Earth Science, Kharazmi University, Tehran, Iran
Reza Nozaem
School of Geology, College of Science, University of Tehran, Tehran, Iran
Related authors
Inmaculada Expósito, Alejandro Jiménez-Bonilla, Michele Delchiaro, José L. Yanes, Juan C. Balanyá, Francisco Moral-Martos, and Marta Della Seta
Earth Surf. Dynam., 10, 1017–1039, https://doi.org/10.5194/esurf-10-1017-2022, https://doi.org/10.5194/esurf-10-1017-2022, 2022
Short summary
Short summary
In long-lived areas, relief rejuvenation can be greatly controlled by both the geometry of reactivated structures and the kinematics setting. We have applied geomorphological qualitative analyses, geomorphic index, and knickpoint modelling to detect the Quaternary reactivation of fractures in the Betic foreland (southern Spain). The obtained relief rejuvenation pattern and fault kinematics agree with propagation of transpressional deformation from the Betic fold-and-thrust belt.
Guglielmo Grechi, Jeffrey R. Moore, Molly E. McCreary, Erin K. Jensen, and Salvatore Martino
Earth Surf. Dynam., 13, 81–95, https://doi.org/10.5194/esurf-13-81-2025, https://doi.org/10.5194/esurf-13-81-2025, 2025
Short summary
Short summary
We investigated the dynamic behavior of a rock arch to understand how fractures influence its stability. Using geophones, we measured its modes of vibration and used numerical modeling to replicate them. We found that higher-order resonance modes are the most sensitive to fractures, indicating their potential as early indicators of structural damage. Therefore, monitoring these higher-order modes could provide a more accurate tool to assess the structural integrity of natural rock landforms.
Inmaculada Expósito, Alejandro Jiménez-Bonilla, Michele Delchiaro, José L. Yanes, Juan C. Balanyá, Francisco Moral-Martos, and Marta Della Seta
Earth Surf. Dynam., 10, 1017–1039, https://doi.org/10.5194/esurf-10-1017-2022, https://doi.org/10.5194/esurf-10-1017-2022, 2022
Short summary
Short summary
In long-lived areas, relief rejuvenation can be greatly controlled by both the geometry of reactivated structures and the kinematics setting. We have applied geomorphological qualitative analyses, geomorphic index, and knickpoint modelling to detect the Quaternary reactivation of fractures in the Betic foreland (southern Spain). The obtained relief rejuvenation pattern and fault kinematics agree with propagation of transpressional deformation from the Betic fold-and-thrust belt.
Cited articles
Agard, P., Omrani, J., Jolivet, L., and Mouthereau, F.: Convergence history
across Zagros (Iran): Constraints from collisional and earlier deformation,
Int. J. Earth Sci., 94, 401–419, https://doi.org/10.1007/s00531-005-0481-4, 2005.
Alavi, M.: Regional stratigraphy of the Zagros fold-thrust belt of Iran and
its proforeland evolution, Am. J. Sci., 304, 1–20,
https://doi.org/10.2475/ajs.304.1.1, 2004.
Apuani, T., Masetti, M., and Rossi, M.: Stress–strain–time numerical
modelling of a deep-seated gravitational slope deformation: preliminary
results, Quatern. Int., 171, 80–89, https://doi.org/10.1016/j.quaint.2007.01.014, 2007.
Binnie, S. A., Phillips, W. M., Summerfield, M. A., and Fifield, L. K.:
Tectonic uplift, threshold hillslopes, and denudation rates in a developing
mountain range, Geology, 35, 743–746, https://doi.org/10.1130/G23641A.1, 2007.
Boulton, S. J., Stokes, M., and Mather, A. E.: Transient fluvial incision as
an indicator of active faulting and Plio-Quaternary uplift of the Moroccan
high Atlas, Tectonophysics, 633, 16–33, https://doi.org/10.1016/j.tecto.2014.06.032,
2014.
Bourne, J. A. and Twidale, C. R.: Neglected and cryptostructural effects in
drainage development, Cadernos do Laboratorio Xeolóxico de Laxe,
36, 41–60, 2011.
Bozzano, F., Martino, S., Montagna, A., and Prestininzi, A.: Back analysis of
a rock landslide to infer rheological parameters, Eng. Geol., 131–132,
45–56, https://doi.org/10.1016/j.enggeo.2012.02.003, 2012.
Bozzano, F., Della Seta, M., and Martino, S.: Time-dependent evolution of
rock slopes by a multi-modelling approach, Geomorphology, 263, 113–131,
https://doi.org/10.1016/j.geomorph.2016.03.031, 2016.
Bretschneider, A., Genevois, R. A., Martino, S., Prestininzi, A., and Verbena,
G. S.: A physically-based scale approach to the analysis of the creep process
involving Mt. Granieri (Southern Italy), Ital. J. Eng. Geol. Environ.,
2013, 123–131, https://doi.org/10.4408/IJEGE.2013-06.B-09, 2013.
Bridgland, D. R., Westaway, R., Romieh, M. A., Candy, I., Daoud, M., Demir,
T., Galiatsatos, N., Schreve, D. C., Seyrek, A., Shaw, A. D., White, T. S.,
and Whittaker, J.: The River Orontes in Syria and Turkey: Downstream
variation of fluvial archives in different crustal blocks, Geomorphology,
165–166, 25–49, https://doi.org/10.1016/j.geomorph.2012.01.011, 2012.
Bridgland, D. R., Demir, T., Seyrek, A., Daoud, M., Abou Romieh, M., and
Westaway, R.: River terrace development in the NE Mediterranean region
(Syria and Turkey): Patterns in relation to crustal type, Quaternary Sci. Rev.,
166, 307–323, https://doi.org/10.1016/j.quascirev.2016.12.015, 2017.
Burbank, D. W. and Anderson R. S.: Tectonic Geomorphology, Second Edition, John Wiley and
Sons, Ltd., Chichester, West Sussex, UK, 2012.
Casciello, E., Vergés, J., Saura, E., Casini, G., Fernandez, N., Blanc,
E., Homke, S., and Hunt, D. W.: Fold patterns and multilayer rheology of the
Lurestan Province, Zagros Simply Folded Belt (Iran), J. Geol. Soc. London,
166, 947–959, https://doi.org/10.1144/0016-76492008-138, 2009.
Chigira, M.: Long-term gravitational deformation of rocks by mass rock
creep, Eng. Geol., 32, 157–184, https://doi.org/10.1016/0013-7952(92)90043-X, 1992.
Davies, T. R. and McSaveney, M. J.: The role of rock fragmentation in the
motion of large landslides, Eng. Geol., 109, 67–79,
https://doi.org/10.1016/j.enggeo.2008.11.004, 2009.
Della Seta, M., Esposito, C., Marmoni, G. M., Martino, S., Scarascia
Mugnozza, G., and Troiani, F.: Morpho-structural evolution of the
valley-slope systems and related implications on slope-scale gravitational
processes: New results from the Mt. Genzana case history (Central Apennines,
Italy), Geomorphology, 289, 60–77, https://doi.org/10.1016/j.geomorph.2016.07.003,
2017.
Demoulin, A., Mather, A., and Whittaker, A.: Fluvial archives, a valuable
record of vertical crustal deformation, Quaternary Sci. Rev., 166, 10–37,
https://doi.org/10.1016/j.quascirev.2016.11.011, 2017.
Eberhardt, E., Stead, D., and Coggan, J. S.: Numerical analysis of initiation
and progressive failure in natural rock slopes-the 1991 Randa rockslide,
Int. J. Rock Mech. Min., 41, 69–87,
https://doi.org/10.1016/S1365-1609(03)00076-5, 2004.
Elyasi, A., Goshtasbi, K., Saeidi, O., and Torabi, S. R.: Stress
determination and geomechanical stability analysis of an oil well of Iran,
Sadhana, Acad. Proc. Eng. Sci., 39, 207–220,
https://doi.org/10.1007/s12046-013-0224-3, 2014.
Golonka, J.: Plate tectonic evolution of the southern margin of Eurasia in
the Mesozoic and Cenozoic, Tectonophysics, 381, 235–273,
https://doi.org/10.1016/j.tecto.2002.06.004, 2004.
Griffiths, H. I., Schwalb, A., and Stevens, L. R.: Environmental change in
southwestern Iran: the Holocene ostracod fauna of Lake
Mirabad, Holocene, 11, 757–764, https://doi.org/10.1191/09596830195771, 2001.
Harrison, J. V. and Falcon, N. L.: The Saidmarreh landslip, south-west
Iran, Geogr. J., 89, 42–47, 1937.
Harrison, J. V. and Falcon, N. L.: An ancient landslip at Saidmarreh in
southwestern Iran, J. Geol., 46, 296–309, 1938.
Hatzfeld, D., Authemayou, C., Van der Beek, P., Bellier, O., Lavé, J.,
Oveisi, B., Tatar, M., Tavakoli, F., Walpersdorf, A., and Yamini-Fard, F.:
The kinematics of the Zagros Mountains (Iran), Geol. Soc. London, Spec.
Publ., 330, 19–42, https://doi.org/10.1144/SP330.3, 2010.
Homke, S., Vergés, J., Garcés, M., Emami, H., and Karpuz, R.:
Magnetostratigraphy of Miocene-Pliocene Zagros foreland deposits in the
front of the Push-e Kush Arc (Lurestan Province, Iran), Earth Planet. Sc.
Lett., 225, 397–410, https://doi.org/10.1016/j.epsl.2004.07.002, 2004.
Hungr, O., Evans, S. G., and Hutchinson, J. N.: A Review of the Classification of Landslides of the Flow Type, Environ. Eng. Geosci., 7, 221–238, https://doi.org/10.2113/gseegeosci.7.3.221, 2001.
Hutchinson, M., Xu, T., and Stein, J.: Recent Progress in the ANUDEM
Elevation Gridding Procedure, Geomorphometry, 19–22, https://doi.org/10.1002/osp4.29,
2011.
Ischuk, A. R.: Usoi rockslide dam and Lake Sarez, Pamir Mountains,
Tajikistan, in: Natural and artificial rock slide dams, Lecture notes in Earth Sciences, edited by: Evans, S. G., Hermanns, R. L., Strom, A. L., and Scarascia Mugnozza, G., Springer, Berlin, Germany, vol. 133, 423–440, 2011.
James, G. A. and Wynd, J. G.: Stratigraphic nomenclature of Iranian oil
consortium agreement area, AApG Bulletin, 49, 2182–2245, 1965.
Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional
landscapes, J. Struct. Geol., 44, 54–75, https://doi.org/10.1016/j.jsg.2012.07.009,
2012.
Larsen, I. J. and Montgomery, D. R.: Landslide erosion coupled to tectonics
and river incision, Nat. Geosci., 5, 468–473, https://doi.org/10.1038/ngeo1479,
2012.
Macleod, J. H.: Kabir Kuh, 1 : 100 000 Geological Map. Iran Oil Operating
Companies, Geological Exploration Division, Tehran, Iran, 1970.
Martino, S., Della Seta, M., and Esposito, C.: Back-analysis of rock
landslides to infer rheological parameters, in: Rock Mechanics and
Engineering, Volume 3: Analysis, Modeling and Design, First Edition,
edited by: Feng, X.-T., Balkema Book, Taylor & Francis Group, London, UK, 237–269, 2017.
McQuarrie, N.: Crustal scale geometry of the Zagros fold-thrust belt, Iran,
J. Struct. Geol., 26, 519–535, https://doi.org/10.1016/j.jsg.2003.08.009, 2004.
Montgomery, D. R. and Brandon, M. T.: Topographic controls on erosion rates
in tectonically active mountain ranges, Earth. Planet. Sc. Lett., 201,
481–489, https://doi.org/10.1016/S0012-821X(02)00725-2, 2002.
Montgomery, D. R. and Foufoula-Georgiou E.: Channel Network Source
Representation Using Digital Elevation Models, Water. Resour. Res., 29,
3925–3934, https://doi.org/10.1029/93WR02463, 1993.
Mouthereau, F., Lacombe, O., and Vergés, J.: Building the Zagros
collisional orogen: Timing, strain distribution and the dynamics of
Arabia/Eurasia plate convergence, Tectonophysics, 532–535, 27–60,
https://doi.org/10.1016/j.tecto.2012.01.022, 2012.
Murray, A. S. and Olley, J. M.: Precision and accuracy in the optically
stimulated luminescence dating of sedimentary quartz: a status review,
Geochronometria, 21, 1–16, 2002.
Oberlander, T. M.: The Zagros streams: a new interpretation of
transversedrainage in an orogenic zone, Syracuse Geographical Series,
Syracuse University Press, New York, USA, 1965.
Oberlander, T. M.: The origin of the Zagros defiles, in: The Cambridge History
of Iran, 1: The Land of Iran, edited by: Fisher, W. B., Cambridge University Press,
Cambridge, UK, 195–211, 1968.
Oberlander, T. M.: Origin of drainage transverse to structures in orogens, in: Tectonic Geomorphology, Proceedings of the 15th Binghamton Geomorphology
Symposium 1984, edited by: Morisawa, M. and Hack, J. T., Allen & Unwin,
Boston, MA, USA, September 1984, State University of New York at Binghamton, 155–182, 1985.
Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M., and Péquegnat, C.:
Seismic imaging of the lithospheric structure of the Zagros mountain belt
(Iran), Geol. Soc. London, Spec. Publ., 330, 5–18, https://doi.org/10.1144/SP330.2,
2010.
Petley, D. N. and Allison, R. J.: The mechanics of deep-seated
landslides, Earth Surf. Proc. Land., 22,
747–758, https://doi.org/10.1002/(SICI)1096-9837(199708)22:8<747::AID-ESP767>3.0.CO;2-%23, 1997.
Rajabi, A. M., Mahdavifar, M. R., Khamehchiyan, M., and Del Gaudio, V.: A new
empirical estimator of coseismic landslide displacement for Zagros Mountain
region (Iran), Nat. Hazards, 59, 1189–1203,
https://doi.org/10.1007/s11069-011-9829-1, 2011.
Ramsey, L. A., Walker, R. T., and Jackson, J.: Fold evolution and drainage
development in the Zagros mountains of Fars province, SE Iran, Basin.
Res., 20, 23–48, https://doi.org/10.1111/j.1365-2117.2007.00342.x, 2008.
Roberts, N. J.: Structural and geologic controls on gigantic (1 Gm3)
landslides in carbonate sequences?: case studies from the Zagros Mountains,
Iran and Rocky Mountains, Canada, Master's thesis, University of Waterloo,
Canada, 2008.
Roberts, N. J. and Evans, S. G.: The gigantic Seymareh (Saidmarreh) rock
avalanche, Zagros Fold–Thrust Belt, Iran, J. Geol. Soc. London., 170,
685–700, https://doi.org/10.1144/jgs2012-090, 2013.
Saito, M.: Forecasting time of slope failure by tertiary creep, in:
Proceedings of the 7th International Conference on Soil Mechanics and
Foundation Engineering, August 1969, Mexico City, Mexico, Vol. 2, 677–683, 1969.
Schmidt, K. M. and Montgomery, D. R.: Limits to Relief, Science, 270,
617–621, https://doi.org/10.1126/science.270.5236.617, 1995.
Schuster, R. L. and Alford, D.: Usoi landslide dam and lake sarez, Pamir
mountains, Tajikistan, Environ. Eng. Geosci., 10, 151–168,
https://doi.org/10.2113/10.2.151, 2004.
Setudehnia, A. and Perry, J. T. O. B.: Dal Parri. 1 : 100 000 Geological Map.
Iran Oil Operating Companies, Geological Exploration Division, Tehran, Iran, 1967.
Shafiei, A. and Dusseault, M. B.: Geomechanical Properties of a Conglomerate
from Iran Geomechanical Properties of a Conglomerate from Iran, in: The 42nd
US Rock Mechanics Symposium (USRMS), American Rock Mechanics Association, 29 June–2 July 2008, San Francisco, https://doi.org/10.13140/RG.2.1.1722.7684, 2008.
Shoaei, Z.: Mechanism of the giant Seimareh Landslide, Iran, and the
longevity of its landslide dams, Environ. Earth Sci., 72, 2411–2422,
https://doi.org/10.1007/s12665-014-3150-8, 2014.
Stampfli, G. M. and Borel, G. D.: A plate tectonic model for the Paleozoic
and Mesozoic constrained by dynamic plate boundaries and restored synthetic
oceanic isochrons, Earth. Planet. Sc. Lett., 196, 17–33,
https://doi.org/10.1016/S0012-821X(01)00588-X, 2002.
Stead, D., Eberhardt, E., and Coggan, J. S.: Developments in the
characterization of complex rock slope deformation and failure using
numerical modelling techniques, Eng. Geol., 83, 217–235,
https://doi.org/10.1016/j.enggeo.2005.06.033, 2006.
Takin, M., Akbari, Y., and Macleod, J. H.: Pul-E Dukhtar. 1 : 100 000 Geological
Map. Iran Oil Operating Companies, Geological Exploration Division, Tehran, Iran,
1970.
Talbot, C. J. and Alavi, M.: The past of a future syntaxis across the
Zagros, Geol. Soc. London, Spec. Publ., 100, 89–109,
https://doi.org/10.1144/GSL.SP.1996.100.01.08, 1996.
Tucker, G. E. and Slingerland, R.: Predicting sediment flux from fold and
thrust belts, Basin Res., 8, 329–349,
https://doi.org/10.1046/j.1365-2117.1996.00238.x, 1996.
Tucker, G. E. and Whipple, K. X.: Topographic outcomes predicted by stream
erosion models: Sensitivity analysis and intermodel comparison, J. Geophys.
Res.-Sol. Ea., 107, 1–16, https://doi.org/10.1029/2001JB000162, 2002.
Vergés, J., Goodarzi, M., Emami, H., Karpuz, R., Efstathiou, J., and
Gillespie, P.: Multiple detachment folding in Pusht-e Kuh arc, Zagros: Role
of mechanical stratigraphy, Thrust fault-related Fold, AAPG Mem., 69–94,
https://doi.org/10.1306/13251333M942899, 2011.
Watson, R. A. and Wright, H. E.: The Saidmarreh landslide, Iran, United States Contributions to Quaternary
Research, Geological Society of America, Special Papers, edited by: Schumm, S. A. and Bradley, W. C., Papers Prepared on the Occasion of the VIII Congress of the International Association for Quaternary Research, Paris, France, 123, 115–139, 1969.
Wilson, J. P. and Gallant, J. C.: Terrain analysis: principles and
applications, John Wiley and Sons, New York, USA, 2000.
Wintle, A. G. and Murray, A. S.: A review of quartz optically stimulated
luminescence characteristics and their relevance in single-aliquot
regeneration dating protocols, Radiat. Meas., 41, 369–391,
https://doi.org/10.1016/j.radmeas.2005.11.001, 2006.
Yamani, M., Goorabi, A., and Azimirad, S.: Large Seymareh landslide and Lake
Terraces Sequence, Physical Geography Research, Quarterly, 44, 43–60, 2012.
Yamini-Fard, F., Hatzfeld, D., Tatar, M., and Mokhtari, M.: Microearthquake
seismicity at the intersection between the Kazerun fault and the Main Recent
Fault (Zagros, Iran), Geophys. J. Int., 166, 186–196,
https://doi.org/10.1111/j.1365-246X.2006.02891.x, 2006.
Zhao, S., Chigira, M., and Wu, X.: Gigantic rockslides induced by fluvial
incision in the Diexi area along the eastern margin of the Tibetan Plateau,
Geomorphology, 338, 27–42, https://doi.org/10.1016/j.geomorph.2019.04.008, 2019.
Short summary
This study provides insights into the causes and effects of the largest landslide and related damming that occurred on the emerged Earth surface. Understanding the hazard conditions is important for refining risk mitigation strategies for extreme landslide scenarios. We mapped and dated lacustrine and fluvial terrace sediments constraining the evolutionary model of the valley, thus providing the basis for future studies on the possible seismic trigger for such an extreme case study.
This study provides insights into the causes and effects of the largest landslide and related...