Articles | Volume 1, issue 1
https://doi.org/10.5194/esurf-1-13-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esurf-1-13-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climate, tectonics or morphology: what signals can we see in drainage basin sediment yields?
T. J. Coulthard
Department of Geography, Environment and Earth Sciences, University of Hull, UK
M. J. Van de Wiel
Department of Geography, University of Western Ontario, London, Ontario, Canada
Related authors
Christopher J. Skinner and Thomas J. Coulthard
Earth Surf. Dynam., 11, 695–711, https://doi.org/10.5194/esurf-11-695-2023, https://doi.org/10.5194/esurf-11-695-2023, 2023
Short summary
Short summary
Landscape evolution models allow us to simulate the way the Earth's surface is shaped and help us to understand relevant processes, in turn helping us to manage landscapes better. The models typically represent the land surface using a grid of square cells of equal size, averaging heights in those squares. This study shows that the size chosen by the modeller for these grid cells is important, with larger sizes making sediment output events larger but less frequent.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021, https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.
Christopher J. Skinner, Tom J. Coulthard, Wolfgang Schwanghart, Marco J. Van De Wiel, and Greg Hancock
Geosci. Model Dev., 11, 4873–4888, https://doi.org/10.5194/gmd-11-4873-2018, https://doi.org/10.5194/gmd-11-4873-2018, 2018
Short summary
Short summary
Landscape evolution models are computer models used to understand how the Earth’s surface changes over time. Although designed to look at broad changes over very long time periods, they could potentially be used to predict smaller changes over shorter periods. However, to do this we need to better understand how the models respond to changes in their set-up – i.e. their behaviour. This work presents a method which can be applied to these models in order to better understand their behaviour.
Jorge A. Ramirez, Umamaheshwaran Rajasekar, Dhruvesh P. Patel, Tom J. Coulthard, and Margreth Keiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-544, https://doi.org/10.5194/hess-2016-544, 2016
Preprint retracted
Short summary
Short summary
Surat, India has a population of 4.5 million and lies on the banks of the river Tapi and is located downstream from a dam that repeatedly floods the city. Floods in Surat may increase in occurrence due to urbanization and climate change. We have developed a model that floods 50 % of the city and exposes > 60 % of the population and critical infrastructure. We highlight how modeling has contributed to changes in flood risk management and resulted in actions that increase city resilience.
Tom J. Coulthard and Christopher J. Skinner
Earth Surf. Dynam., 4, 757–771, https://doi.org/10.5194/esurf-4-757-2016, https://doi.org/10.5194/esurf-4-757-2016, 2016
Short summary
Short summary
Landscape evolution models are driven by climate or precipitation data. We show that higher-resolution data lead to greater basin sediment yields (> 100 % increase) despite minimal changes in hydrological outputs. Spatially, simulations over 1000 years show finer-resolution data lead to a systematic bias of more erosion in headwater streams with more deposition in valley floors. This could have important implications for the long-term predictions of past and present landscape evolution models.
Christopher J. Skinner and Thomas J. Coulthard
Earth Surf. Dynam., 11, 695–711, https://doi.org/10.5194/esurf-11-695-2023, https://doi.org/10.5194/esurf-11-695-2023, 2023
Short summary
Short summary
Landscape evolution models allow us to simulate the way the Earth's surface is shaped and help us to understand relevant processes, in turn helping us to manage landscapes better. The models typically represent the land surface using a grid of square cells of equal size, averaging heights in those squares. This study shows that the size chosen by the modeller for these grid cells is important, with larger sizes making sediment output events larger but less frequent.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021, https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.
Christopher J. Skinner, Tom J. Coulthard, Wolfgang Schwanghart, Marco J. Van De Wiel, and Greg Hancock
Geosci. Model Dev., 11, 4873–4888, https://doi.org/10.5194/gmd-11-4873-2018, https://doi.org/10.5194/gmd-11-4873-2018, 2018
Short summary
Short summary
Landscape evolution models are computer models used to understand how the Earth’s surface changes over time. Although designed to look at broad changes over very long time periods, they could potentially be used to predict smaller changes over shorter periods. However, to do this we need to better understand how the models respond to changes in their set-up – i.e. their behaviour. This work presents a method which can be applied to these models in order to better understand their behaviour.
Jorge A. Ramirez, Umamaheshwaran Rajasekar, Dhruvesh P. Patel, Tom J. Coulthard, and Margreth Keiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-544, https://doi.org/10.5194/hess-2016-544, 2016
Preprint retracted
Short summary
Short summary
Surat, India has a population of 4.5 million and lies on the banks of the river Tapi and is located downstream from a dam that repeatedly floods the city. Floods in Surat may increase in occurrence due to urbanization and climate change. We have developed a model that floods 50 % of the city and exposes > 60 % of the population and critical infrastructure. We highlight how modeling has contributed to changes in flood risk management and resulted in actions that increase city resilience.
Tom J. Coulthard and Christopher J. Skinner
Earth Surf. Dynam., 4, 757–771, https://doi.org/10.5194/esurf-4-757-2016, https://doi.org/10.5194/esurf-4-757-2016, 2016
Short summary
Short summary
Landscape evolution models are driven by climate or precipitation data. We show that higher-resolution data lead to greater basin sediment yields (> 100 % increase) despite minimal changes in hydrological outputs. Spatially, simulations over 1000 years show finer-resolution data lead to a systematic bias of more erosion in headwater streams with more deposition in valley floors. This could have important implications for the long-term predictions of past and present landscape evolution models.
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Ice-buttressing-controlled rock slope failure on a cirque headwall, Lake District, UK
The probabilistic nature of dune collisions in 2D
Shape still matters: rockfall interactions with trees and deadwood in a mountain forest uncover a new facet of rock shape dependency
Earthquake contributions to coastal cliff retreat
Morphologic and morphometric differences between gullies formed in different substrates on Mars: new insights into the gully formation processes
Testing the sensitivity of the CAESAR-Lisflood landscape evolution model to grid cell size
Development of a machine learning model for river bed load
Modeling the spatially distributed nature of subglacial sediment transport and erosion
Confinement width and inflow-to-sediment discharge ratio control the morphology and braiding intensity of submarine channels: insights from physical experiments and reduced-complexity models
The influence of dune lee side shape on time-averaged velocities and turbulence
Synoptic-scale to mesoscale atmospheric circulation connects fluvial and coastal gravel conveyors and directional deposition of coastal landforms in the Dead Sea basin
Initial shape reconstruction of a volcanic island as a tool for quantifying long-term coastal erosion: the case of Corvo Island (Azores)
Geospatial modelling of large-wood supply to rivers: a state-of-the-art model comparison in Swiss mountain river catchments
Mobile evaporite enhances the cycle of physical–chemical erosion in badlands
Revealing the relation between spatial patterns of rainfall return levels and landslide density
Constraints on long-term cliff retreat and intertidal weathering at weak rock coasts using cosmogenic 10Be, nearshore topography and numerical modelling
Impacts of human modifications on material transport in deltas
Evolution of an Alpine proglacial river during 7 decades of deglaciation
Phenomenological model of suspended sediment transport in a small catchment
Water level fluctuations drive bank instability in a hypertidal estuary
Geotechnical controls on erodibility in fluvial impact erosion
The story of a summit nucleus: hillslope boulders and their effect on erosional patterns and landscape morphology in the Chilean Coastal Cordillera
Pristine levels of suspended sediment in large German river channels during the Anthropocene?
An Arctic delta reduced-complexity model and its reproduction of key geomorphological structures
Development of the morphodynamics on Little Ice Age lateral moraines in 10 glacier forefields of the Eastern Alps since the 1950s
Modeling the inhibition effect of straw checkerboard barriers on wind-blown sand
Exploring the transition between water- and wind-dominated landscapes in Deep Springs, California, as an analog for transitioning landscapes on Mars
Spatiotemporal Bedload Transport Patterns Over Two-Dimensional Bedforms
Sediment source and sink identification using Sentinel-2 and (kayak-based) lagrangian river turbidity profiles on the Vjosa River
Geology and vegetation control landsliding on forest-managed slopes in scarplands
Entrainment and deposition of boulders in a gravel bed river
Coupling between downstream variations of channel width and local pool–riffle bed topography
A combined approach of experimental and numerical modeling for 3D hydraulic features of a step-pool unit
Combining seismic signal dynamic inversion and numerical modeling improves landslide process reconstruction
Building a Bimodal Landscape with Varying Bed Thicknesses in Last Chance Canyon, New Mexico
Response of modern fluvial sediments to regional tectonic activity along the upper Min River, eastern Tibet
Geophysical evidence of massive hyperconcentrated push waves with embedded toma hills caused by the Flims rockslide, Switzerland
Comparison of calibration characteristics of different acoustic impact systems for measuring bedload transport in mountain streams
Estimating surface water availability in high mountain rock slopes using a numerical energy balance model
Episodic sediment supply to alluvial fans: implications for fan incision and morphometry
Failure mode of rainfall-induced landslide of granite residual soil, southeastern Guangxi Province, China
Exploring exogenous controls on short- versus long-term erosion rates globally
The effects of late Cenozoic climate change on the global distribution of frost cracking
Transitional rock glaciers at sea level in northern Norway
Grain size of fluvial gravel bars from close-range UAV imagery – uncertainty in segmentation-based data
Toward a general calibration of the Swiss plate geophone system for fractional bedload transport
Quantification of post-glacier bedrock surface erosion in the European Alps using 10Be and optically stimulated luminescence exposure dating
A comparison of 1D and 2D bedload transport functions under high excess shear stress conditions in laterally constrained gravel-bed rivers: a laboratory study
Short communication: Forward and inverse analytic models relating river long profile to tectonic uplift history, assuming a nonlinear slope–erosion dependency
Probabilistic description of bedload fluxes from the aggregate dynamics of individual grains
Paul A. Carling, John D. Jansen, Teng Su, Jane Lund Andersen, and Mads Faurschou Knudsen
Earth Surf. Dynam., 11, 817–833, https://doi.org/10.5194/esurf-11-817-2023, https://doi.org/10.5194/esurf-11-817-2023, 2023
Short summary
Short summary
Many steep glaciated rock walls collapsed when the Ice Age ended. How ice supports a steep rock wall until the ice decays is poorly understood. A collapsed rock wall was surveyed in the field and numerically modelled. Cosmogenic exposure dates show it collapsed and became ice-free ca. 18 ka ago. The model showed that the rock wall failed very slowly because ice was buttressing the slope. Dating other collapsed rock walls can improve understanding of how and when the last Ice Age ended.
Paul A. Jarvis, Clement Narteau, Olivier Rozier, and Nathalie M. Vriend
Earth Surf. Dynam., 11, 803–815, https://doi.org/10.5194/esurf-11-803-2023, https://doi.org/10.5194/esurf-11-803-2023, 2023
Short summary
Short summary
Sand dune migration velocity is inversely proportional to dune size. Consequently, smaller, faster dunes can collide with larger, slower downstream dunes. Such collisions can result in either coalescence or ejection, whereby the dunes exchange mass but remain separate. Our numerical simulations show that the outcome depends probabilistically on the dune size ratio, which we describe through an empirical function. Our numerical predictions compare favourably against experimental observations.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 11, 779–801, https://doi.org/10.5194/esurf-11-779-2023, https://doi.org/10.5194/esurf-11-779-2023, 2023
Short summary
Short summary
Swiss researchers carried out repeated rockfall experiments with rocks up to human sizes in a steep mountain forest. This study focuses mainly on the effects of the rock shape and lying deadwood. In forested areas, cubic-shaped rocks showed a longer mean runout distance than platy-shaped rocks. Deadwood especially reduced the runouts of these cubic rocks. The findings enrich standard practices in modern rockfall hazard zoning assessments and strongly urge the incorporation of rock shape effects.
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, and Chris Massey
Earth Surf. Dynam., 11, 757–778, https://doi.org/10.5194/esurf-11-757-2023, https://doi.org/10.5194/esurf-11-757-2023, 2023
Short summary
Short summary
Earthquakes can cause damaging coastal cliff retreat, but we have a limited understanding of how these infrequent events influence multidecadal retreat. This makes hazard planning a challenge. In this study, we use historic aerial images to measure coastal cliff-top retreat at a site in New Zealand. We find that earthquakes account for close to half of multidecadal retreat at this site, and our results have helped us to develop tools for estimating the influence of earthquakes at other sites.
Rishitosh K. Sinha, Dwijesh Ray, Tjalling De Haas, Susan J. Conway, and Axel Noblet
Earth Surf. Dynam., 11, 713–730, https://doi.org/10.5194/esurf-11-713-2023, https://doi.org/10.5194/esurf-11-713-2023, 2023
Short summary
Short summary
Our detailed investigation of Martian gullies formed in different substrates in 29 craters distributed between 30°–75° S latitude suggests that they can be differentiated from one another in terms of (1) morphology and length of alcoves and (2) mean gradient of the gully fans. The comparison between the Melton ratio, alcove length, and fan gradient of Martian and terrestrial gullies suggests that Martian gullies were likely formed by terrestrial debris-flow-like processes in the past.
Christopher J. Skinner and Thomas J. Coulthard
Earth Surf. Dynam., 11, 695–711, https://doi.org/10.5194/esurf-11-695-2023, https://doi.org/10.5194/esurf-11-695-2023, 2023
Short summary
Short summary
Landscape evolution models allow us to simulate the way the Earth's surface is shaped and help us to understand relevant processes, in turn helping us to manage landscapes better. The models typically represent the land surface using a grid of square cells of equal size, averaging heights in those squares. This study shows that the size chosen by the modeller for these grid cells is important, with larger sizes making sediment output events larger but less frequent.
Hossein Hosseiny, Claire C. Masteller, Jedidiah E. Dale, and Colin B. Phillips
Earth Surf. Dynam., 11, 681–693, https://doi.org/10.5194/esurf-11-681-2023, https://doi.org/10.5194/esurf-11-681-2023, 2023
Short summary
Short summary
It is of great importance to engineers and geomorphologists to predict the rate of bed load in rivers. In this contribution, we used a large dataset of measured data and developed an artificial neural network (ANN), a machine learning algorithm, for bed load prediction. The ANN model predicted the bed load flux close to measured values and better than the ones obtained from four standard bed load models with varying degrees of complexity.
Ian Delaney, Leif Anderson, and Frédéric Herman
Earth Surf. Dynam., 11, 663–680, https://doi.org/10.5194/esurf-11-663-2023, https://doi.org/10.5194/esurf-11-663-2023, 2023
Short summary
Short summary
This paper presents a two-dimensional subglacial sediment transport model that evolves a sediment layer in response to subglacial sediment transport conditions. The model captures sediment transport in supply- and transport-limited regimes across a glacier's bed and considers both the creation and transport of sediment. Model outputs show how the spatial distribution of sediment and water below a glacier can impact the glacier's discharge of sediment and erosion of bedrock.
Sam Y. J. Huang, Steven Y. J. Lai, Ajay B. Limaye, Brady Z. Foreman, and Chris Paola
Earth Surf. Dynam., 11, 615–632, https://doi.org/10.5194/esurf-11-615-2023, https://doi.org/10.5194/esurf-11-615-2023, 2023
Short summary
Short summary
We use experiments and a model to study the effects of confinement width and the inflow-to-sediment discharge ratio on the evolution of submarine braided channels. We find that confinement width controls most of the morphological changes. These trends are consistent for submarine braided channels both with and without confinement width effects and similar to fluvial braided rivers. Furthermore, we built a model that can simulate the flow bifurcation and confluence of submarine braided channels.
Alice Lefebvre and Julia Cisneros
Earth Surf. Dynam., 11, 575–591, https://doi.org/10.5194/esurf-11-575-2023, https://doi.org/10.5194/esurf-11-575-2023, 2023
Short summary
Short summary
Underwater dunes are found in various environments with strong hydrodynamics and sandy sediment. Using a numerical model, we investigated how the dune shape influences flow velocity and turbulence. We propose a classification with three types of dunes, depending on their mean lee side angles (low-angle dunes, intermediate-angle dunes and high-angle dunes). We discuss the implications of this classification on the interaction between dune morphology, flow and sediment transport.
Haggai Eyal, Moshe Armon, Yehouda Enzel, and Nadav G. Lensky
Earth Surf. Dynam., 11, 547–574, https://doi.org/10.5194/esurf-11-547-2023, https://doi.org/10.5194/esurf-11-547-2023, 2023
Short summary
Short summary
Extracting paleoenvironmets from sedimentologic and geomorphic records is a main goal in Earth sciences. We study a chain of processes connecting causative Mediterranean cyclones, coeval floods, storm waves generated by mesoscale funneled wind, and coastal gravel transport. This causes northward dispersion of gravel along the modern Dead Sea coast, which has also persisted since the late Pleistocene, resulting in beach berms and fan deltas always being deposited north of channel mouths.
Rémi Bossis, Vincent Regard, and Sébastien Carretier
Earth Surf. Dynam., 11, 529–545, https://doi.org/10.5194/esurf-11-529-2023, https://doi.org/10.5194/esurf-11-529-2023, 2023
Short summary
Short summary
This study presents a method to calculate the volume of rock eroded by the sea on volcanic islands, by reconstructing their pre-erosion shape and size. The method has been applied on Corvo Island (Azores). We show that before the island was eroded, it was roughly 8 km wide and 1 km high. The island has lost more than 6 km3 of rock and 80 % of its surface. We also show that the erosion of sea cliffs is mainly due to the moderate and most frequent waves.
Nicolas Steeb, Virginia Ruiz-Villanueva, Alexandre Badoux, Christian Rickli, Andrea Mini, Markus Stoffel, and Dieter Rickenmann
Earth Surf. Dynam., 11, 487–509, https://doi.org/10.5194/esurf-11-487-2023, https://doi.org/10.5194/esurf-11-487-2023, 2023
Short summary
Short summary
Various models have been used in science and practice to estimate how much large wood (LW) can be supplied to rivers. This contribution reviews the existing models proposed in the last 35 years and compares two of the most recent spatially explicit models by applying them to 40 catchments in Switzerland. Differences in modelling results are discussed, and results are compared to available observations coming from a unique database.
Ci-Jian Yang, Pei-Hao Chen, Erica D. Erlanger, Jens M. Turowski, Sen Xu, Tse-Yang Teng, Jiun-Chuan Lin, and Jr-Chuang Huang
Earth Surf. Dynam., 11, 475–486, https://doi.org/10.5194/esurf-11-475-2023, https://doi.org/10.5194/esurf-11-475-2023, 2023
Short summary
Short summary
Observations of the interaction between extreme physical erosion and chemical weathering dynamics are limited. We presented major elements of stream water in the badland catchment at 3 h intervals during a 3 d typhoon. The excess sodium in the evaporite deposits causes material dispersion through deflocculation, which enhances the suspended sediment flux. Moreover, we observed a shift from predominantly evaporite weathering at peak precipitation to silicate weathering at peak discharge.
Slim Mtibaa and Haruka Tsunetaka
Earth Surf. Dynam., 11, 461–474, https://doi.org/10.5194/esurf-11-461-2023, https://doi.org/10.5194/esurf-11-461-2023, 2023
Short summary
Short summary
We explore the relation between the spatial patterns of rainfall return levels for various timespans (1–72 h) and landslide density during a rainfall event that triggered widespread landslides. We found that landslide density increases with increased rainfall return levels for the various examined timespans. Accordingly, we conclude that whether rainfall intensities reached exceptional return levels for a wide time range is a key determinant of the spatial distribution of landslides.
Jennifer R. Shadrick, Dylan H. Rood, Martin D. Hurst, Matthew D. Piggott, Klaus M. Wilcken, and Alexander J. Seal
Earth Surf. Dynam., 11, 429–450, https://doi.org/10.5194/esurf-11-429-2023, https://doi.org/10.5194/esurf-11-429-2023, 2023
Short summary
Short summary
This study uses a coastal evolution model to interpret cosmogenic beryllium-10 concentrations and topographic data and, in turn, quantify long-term cliff retreat rates for four chalk sites on the south coast of England. By using a process-based model, clear distinctions between intertidal weathering rates have been recognised between chalk and sandstone rock coast sites, advocating the use of process-based models to interpret the long-term behaviour of rock coasts.
Jayaram Hariharan, Kyle Wright, Andrew Moodie, Nelson Tull, and Paola Passalacqua
Earth Surf. Dynam., 11, 405–427, https://doi.org/10.5194/esurf-11-405-2023, https://doi.org/10.5194/esurf-11-405-2023, 2023
Short summary
Short summary
We simulate the transport of material through numerically simulated river deltas under natural and human-modified (embankment construction and channel dredging) scenarios to understand their impacts on material transport. Human modifications reduce the total area visited by passive particles and alter the amount of time spent within the delta relative to natural conditions. This work can help us understand how future construction may impact land building or ecosystem restoration projects.
Livia Piermattei, Tobias Heckmann, Sarah Betz-Nutz, Moritz Altmann, Jakob Rom, Fabian Fleischer, Manuel Stark, Florian Haas, Camillo Ressl, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, https://doi.org/10.5194/esurf-11-383-2023, 2023
Short summary
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
Amande Roque-Bernard, Antoine Lucas, Eric Gayer, Pascal Allemand, Céline Dessert, and Eric Lajeunesse
Earth Surf. Dynam., 11, 363–381, https://doi.org/10.5194/esurf-11-363-2023, https://doi.org/10.5194/esurf-11-363-2023, 2023
Short summary
Short summary
Sediment transport in rivers is an important matter in Earth surface dynamics. We offer a new framework of understanding of the suspended sediment transport through observatory chronicles and a simple model that is able to catch the behavior during a flood event as well as time series in a steep river catchment. We validate our approach in both tropical and alpine environments, which also offers additional estimates of the size of the suspended sediment.
Andrea Gasparotto, Stephen E. Darby, Julian Leyland, and Paul A. Carling
Earth Surf. Dynam., 11, 343–361, https://doi.org/10.5194/esurf-11-343-2023, https://doi.org/10.5194/esurf-11-343-2023, 2023
Short summary
Short summary
In this study the processes leading to bank failures in the hypertidal Severn Estuary are studied employing numerical models and field observations. Results highlight that the periodic fluctuations in water levels drive an imbalance in the resisting (hydrostatic pressure) versus driving (pore water pressure) forces causing a frequent oscillation of bank stability between stable (at high tide) and unstable states (at low tide) both on semidiurnal bases and in the spring–neap transition.
Jens Martin Turowski, Gunnar Pruß, Anne Voigtländer, Andreas Ludwig, Angela Landgraf, Florian Kober, and Audrey Bonnelye
EGUsphere, https://doi.org/10.5194/egusphere-2023-76, https://doi.org/10.5194/egusphere-2023-76, 2023
Short summary
Short summary
Rivers can cut into rocks and their strength modulates the river's erosion rates. Yet, it is poorly understood which properties of the rock control its response to erosive action. Here, we describe parallel experiments to measure rock erosion rates under fluvial impact erosion and the rock's geotechnical properties such as fracture strength, elasticity and density. Erosion rates vary over a factor of million between different rock types. We use the data to improve current theory.
Emma Lodes, Dirk Scherler, Renee van Dongen, and Hella Wittmann
Earth Surf. Dynam., 11, 305–324, https://doi.org/10.5194/esurf-11-305-2023, https://doi.org/10.5194/esurf-11-305-2023, 2023
Short summary
Short summary
We explored the ways that boulders and bedrock affect the shapes of hills and valleys by testing how quickly they erode compared to soil. We found that bedrock and boulders mostly erode more slowly than soil and predict that fracture patterns affect where they exist. We also found that streams generally follow fault orientations. Together, our data imply that fractures influence landscapes by weakening bedrock, causing it to erode faster and to eventually form a valley where a stream may flow.
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan H. Blöthe, Karl Auerswald, and Peter Fiener
Earth Surf. Dynam., 11, 287–303, https://doi.org/10.5194/esurf-11-287-2023, https://doi.org/10.5194/esurf-11-287-2023, 2023
Short summary
Short summary
We analyzed more than 440 000 measurements from suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly declined by 50 % between 1990 and 2010. We argue that SSC is approaching the natural base level that was reached during the mid-Holocene. There is no simple explanation for this decline, but increased sediment retention in upstream headwaters is presumably the major reason for declining SSC in the large river channels studied.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam., 11, 259–285, https://doi.org/10.5194/esurf-11-259-2023, https://doi.org/10.5194/esurf-11-259-2023, 2023
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature ubiquitous to Arctic deltas and simulate its future under climate warming. This can impact the future of Arctic deltas and the carbon release they moderate.
Sarah Betz-Nutz, Tobias Heckmann, Florian Haas, and Michael Becht
Earth Surf. Dynam., 11, 203–226, https://doi.org/10.5194/esurf-11-203-2023, https://doi.org/10.5194/esurf-11-203-2023, 2023
Short summary
Short summary
The geomorphic activity of LIA lateral moraines is of high interest due to its implications for the sediment fluxes and hazards within proglacial areas. We derived multitemporal models from historical aerial images and recent drone images to investigate the morphodynamics on moraine slopes over time. We found that the highest erosion rates occur on the steepest moraine slopes, which stay active for decades, and that the slope angle explains morphodynamics better than the time since deglaciation.
Haojie Huang
Earth Surf. Dynam., 11, 167–181, https://doi.org/10.5194/esurf-11-167-2023, https://doi.org/10.5194/esurf-11-167-2023, 2023
Short summary
Short summary
Straw checkerboard barriers (SCBs) have been widely used in anti-desertification projects. However, research on this mechanism and its laying length are still lacking. The significance of our work is to analyze some results, which seem simple but lack a theoretical basis from the perspective of turbulence through this model. This study may provide theoretical support for the minimum laying length of SCBs in anti-desertification projects.
Taylor Dorn and Mackenzie Day
Earth Surf. Dynam., 11, 149–165, https://doi.org/10.5194/esurf-11-149-2023, https://doi.org/10.5194/esurf-11-149-2023, 2023
Short summary
Short summary
Planetary surfaces are shaped by both wind and water, and their resulting surface features are commonly observed by aerial images. Deep Springs playa, CA, provides a comparable wet-to-dry-transitioning landscape as experienced in Mars' past. Our results, made through collected weather data and drone footage, show that some features, when observed solely by aerial imagery, might be interpreted as being formed by wind when in fact other processes were more influential in their formation.
Kate C. P. Leary, Leah Tevis, and Mark Schmeeckle
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2023-3, https://doi.org/10.5194/esurf-2023-3, 2023
Revised manuscript accepted for ESurf
Short summary
Short summary
Despite the importance of bedforms (e.g. ripples, dunes) to sediment transport, the details of sediment transport on a sub-bedform scale are poorly understood. This paper investigates sediment transport in the downstream and cross-stream directions over bedforms with straight crests. We find that the patterns of bedload transport are highly variable on the sub-bedform scale, which is important for our understanding of the evolution of bedforms with complex crest geometries.
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
EGUsphere, https://doi.org/10.5194/egusphere-2023-156, https://doi.org/10.5194/egusphere-2023-156, 2023
Short summary
Short summary
We combined data from satellite images with data measured from a kayak in order to understand the propagation of fine sediment in the Vjosa river. We were able to find some storm-activated and some permanent sources of sediment. We also estimated how much fine sediment is carried into the Adriatic Sea by the Vjosa river, which is approximately 2.5 Mt of sediment per year and matches previous findings. With our work, we hope to show the potential of open-access satellite images.
Daniel Draebing, Tobias Gebhard, and Miriam Pheiffer
Earth Surf. Dynam., 11, 71–88, https://doi.org/10.5194/esurf-11-71-2023, https://doi.org/10.5194/esurf-11-71-2023, 2023
Short summary
Short summary
Scarpland formation produced low-inclined slopes susceptible to deep-seated landsliding on geological scales. These landslide-affected slopes are often used for forestry activities today, and interaction between geology and vegetation controls shallow landsliding. Our data show that Feuerletten clays control deep-seated landsliding processes that can be reactivated. When trees are sufficiently dense to provide lateral root cohesion, trees can prevent the occurrence of shallow landslides.
Pascal Allemand, Eric Lajeunesse, Olivier Devauchelle, and Vincent J. Langlois
Earth Surf. Dynam., 11, 21–32, https://doi.org/10.5194/esurf-11-21-2023, https://doi.org/10.5194/esurf-11-21-2023, 2023
Short summary
Short summary
We recorded yearly images of a bar of the Vieux-Habitants river, a river located on Basse-Terre (Guadeloupe). These images, combined with measurements of the river discharge, allow us to monitor the evolution of the population of boulders. We estimate the smallest discharge that can move the boulders and calculate the effective transport time. We show that the likelihood of a given boulder remaining at the same location decreases exponentially, with an effective residence time of 17 h.
Shawn M. Chartrand, A. Mark Jellinek, Marwan A. Hassan, and Carles Ferrer-Boix
Earth Surf. Dynam., 11, 1–20, https://doi.org/10.5194/esurf-11-1-2023, https://doi.org/10.5194/esurf-11-1-2023, 2023
Short summary
Short summary
Rivers with alternating patterns of shallow and deep flows are commonly observed where a river widens and then narrows, respectively. But what if width changes over time? We use a lab experiment to address this question and find it is possible to decrease and then increase river width at a specific location and observe that flows deepen and then shallow consistent with expectations. Our observations can inform river restoration and climate adaptation programs that emphasize river corridors.
Chendi Zhang, Yuncheng Xu, Marwan A. Hassan, Mengzhen Xu, and Pukang He
Earth Surf. Dynam., 10, 1253–1272, https://doi.org/10.5194/esurf-10-1253-2022, https://doi.org/10.5194/esurf-10-1253-2022, 2022
Short summary
Short summary
Step-pool morphology is common in mountain streams. The geomorphic processes of step-pool features closely interact with hydraulic properties, which have limited access due to measurement difficulties. We established a combined approach using both physical experiments and numerical simulations to acquire detailed three-dimensional hydraulics for step-pool morphology, which improves the understanding of the links between hydraulics and morphology for a step-pool feature.
Yan Yan, Yifei Cui, Xinghui Huang, Jiaojiao Zhou, Wengang Zhang, Shuyao Yin, Jian Guo, and Sheng Hu
Earth Surf. Dynam., 10, 1233–1252, https://doi.org/10.5194/esurf-10-1233-2022, https://doi.org/10.5194/esurf-10-1233-2022, 2022
Short summary
Short summary
Landslides present a significant hazard for humans, but continuous landslide monitoring is not yet possible due to their unpredictability. Our study has demonstrated that combing landslide seismic signal analysis, dynamic inversion, and numerical simulation provides a comprehensive and accurate method for studying the landslide process. The approach outlined in this study could be used to support hazard prevention and control in sensitive areas.
Samuel Anderson, Nicole Gasparini, and Joel Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2022-1285, https://doi.org/10.5194/egusphere-2022-1285, 2022
Short summary
Short summary
We measured rock strength and amount of fracturing in the two different rock types, sandstones and carbonates, in Last Chance Canyon, New Mexico, USA. Where there is more carbonate bedrock, hills and channels steepen in Last Chance Canyon. This is because the carbonate type bedrock tends to be more thickly bedded, is less fractured, and is stronger. The carbonate bedrock produces larger boulders than the sandstone bedrock which can protect the more fractured sandstone bedrock from erosion.
Wei Shi, Hanchao Jiang, Hongyan Xu, Siyuan Ma, Jiawei Fan, Siqi Zhang, Qiaoqiao Guo, and Xiaotong Wei
Earth Surf. Dynam., 10, 1195–1209, https://doi.org/10.5194/esurf-10-1195-2022, https://doi.org/10.5194/esurf-10-1195-2022, 2022
Short summary
Short summary
Alpine valleys reduce the preservation potential of Quaternary sediment in bedrock valley regions, which seriously hinders the study of modern tectonic activity. We report a new method to reveal regional tectonic activity by analyzing fluvial sediments in tectonically active regions. Our analyses identify three segments of different tectonic activities along the upper Min River, eastern Tibet. This method provides a key framework to reveal tectonic activity in other regions of the world.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
Dieter Rickenmann, Lorenz Ammann, Tobias Nicollier, Stefan Boss, Bruno Fritschi, Gilles Antoniazza, Nicolas Steeb, Zheng Chen, Carlos Wyss, and Alexandre Badoux
Earth Surf. Dynam., 10, 1165–1183, https://doi.org/10.5194/esurf-10-1165-2022, https://doi.org/10.5194/esurf-10-1165-2022, 2022
Short summary
Short summary
The Swiss plate geophone system has been installed and tested in more than 20 steep gravel-bed streams. It is an indirect bedload transport measuring system. We compare the performance of this system with three alternative surrogate measuring systems, using calibration measurements with direct bedload samples from three field sites and an outdoor flume facility. Three of the four systems resulted in robust calibration relations between signal impulse counts and transported bedload mass.
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Emmanuel Malet, Johan Berthet, Josué Bock, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-58, https://doi.org/10.5194/esurf-2022-58, 2022
Revised manuscript accepted for ESurf
Short summary
Short summary
Water in fractures drive many processes that destabilize steep permafrost-affected rock walls. However, quantitative knowledge on water availability for infiltration is limited. Here we use a numerical model and field measurements to estimate the water balance in a steep rock walls site. We show that snowmelt is the main source of water at elevations >3600 m and that snowpack hydrology and sublimation are key factors. Below 3600 m, surface water availability is increased rapidly due to rainfall.
Anya S. Leenman and Brett C. Eaton
Earth Surf. Dynam., 10, 1097–1114, https://doi.org/10.5194/esurf-10-1097-2022, https://doi.org/10.5194/esurf-10-1097-2022, 2022
Short summary
Short summary
The supply of sediment (sand and gravel) carried by a stream out of a steep mountain valley is widely thought to control the gradient of the fan-shaped landforms that streams often build where they leave their valley. We tested this idea in a set of
sandboxexperiments with oscillating high and low sediment supply. Even though the average sediment supply never changed, longer oscillations built flatter fans, indicating how wetter climates might affect these mountain landforms.
Shanbai Wu, Ruihua Zhao, Liping Liao, Yunchuan Yang, Yao Wei, and Wenzhi Wei
Earth Surf. Dynam., 10, 1079–1096, https://doi.org/10.5194/esurf-10-1079-2022, https://doi.org/10.5194/esurf-10-1079-2022, 2022
Short summary
Short summary
Granite residual soil landslides are widely distributed in southeastern Guangxi Province, China. To understand the failure mode, the landslide can provide a scientific basis for early warning and prevention. In this study, we conducted artificial flume model tests to investigate the failure mode of granite residual soil landslide. The research provides valuable references for the prevention and early warning of granite residual soil landslide in the southeast of Guangxi.
Shiuan-An Chen, Katerina Michaelides, David A. Richards, and Michael Bliss Singer
Earth Surf. Dynam., 10, 1055–1078, https://doi.org/10.5194/esurf-10-1055-2022, https://doi.org/10.5194/esurf-10-1055-2022, 2022
Short summary
Short summary
Drainage basin erosion rates influence landscape evolution through controlling land surface lowering and sediment flux, but gaps remain in understanding their large-scale patterns and drivers between timescales. We analysed global erosion rates and show that long-term erosion rates are controlled by rainfall, former glacial processes, and basin landform, whilst human activities enhance short-term erosion rates. The results highlight the complex interplay of controls on land surface processes.
Hemanti Sharma, Sebastian G. Mutz, and Todd A. Ehlers
Earth Surf. Dynam., 10, 997–1015, https://doi.org/10.5194/esurf-10-997-2022, https://doi.org/10.5194/esurf-10-997-2022, 2022
Short summary
Short summary
We estimate global changes in frost cracking intensity (FCI) using process-based models for four time slices in the late Cenozoic ranging from the Pliocene (∼ 3 Ma) to pre-industrial (∼ 1850 CE, PI). For all time slices, results indicate that FCI was most prevalent in middle to high latitudes and high-elevation lower-latitude areas such as Tibet. Larger deviations (relative to PI) were observed in colder (LGM) and warmer climates (Pliocene) due to differences in temperature and glaciation.
Karianne S. Lilleøren, Bernd Etzelmüller, Line Rouyet, Trond Eiken, Gaute Slinde, and Christin Hilbich
Earth Surf. Dynam., 10, 975–996, https://doi.org/10.5194/esurf-10-975-2022, https://doi.org/10.5194/esurf-10-975-2022, 2022
Short summary
Short summary
In northern Norway we have observed several rock glaciers at sea level. Rock glaciers are landforms that only form under the influence of permafrost, which is frozen ground. Our investigations show that the rock glaciers are probably not active under the current climate but most likely were active in the recent past. This shows how the Arctic now changes due to climate changes and also how similar areas in currently colder climates will change in the future.
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
David L. Adams and Brett C. Eaton
Earth Surf. Dynam., 10, 895–907, https://doi.org/10.5194/esurf-10-895-2022, https://doi.org/10.5194/esurf-10-895-2022, 2022
Short summary
Short summary
Channel processes under flood conditions are important for river science and management as they involve high volumes of sediment transport and erosion. However, these processes remain poorly understood as the data are difficult to collect. Using a physical model of a river, we found that simple equations based on the mean shear stress and median grain size predicted sediment transport as accurately as ones that accounted for the full range of shear stresses.
Yizhou Wang, Liran Goren, Dewen Zheng, and Huiping Zhang
Earth Surf. Dynam., 10, 833–849, https://doi.org/10.5194/esurf-10-833-2022, https://doi.org/10.5194/esurf-10-833-2022, 2022
Short summary
Short summary
Abrupt changes in tectonic uplift rates induce sharp changes in river profile, called knickpoints. When river erosion depends non-linearly on slope, we develop an analytic model for knickpoint velocity and find the condition of knickpoint merging. Then we develop analytic models that represent the two-directional link between tectonic changes and river profile evolution. The derivation provides new understanding on the links between tectonic changes and river profile evolution.
J. Kevin Pierce, Marwan A. Hassan, and Rui M. L. Ferreira
Earth Surf. Dynam., 10, 817–832, https://doi.org/10.5194/esurf-10-817-2022, https://doi.org/10.5194/esurf-10-817-2022, 2022
Short summary
Short summary
We describe the flow of sediment in river channels by replacing the complicated details of the turbulent water with probability arguments. Our major conclusions are that (1) sediment transport can be phrased in terms of the movements of individual sediment grains, (2) transport rates in river channels are inherently uncertain, and (3) sediment transport in rivers is directly analogous to a number of phenomena which we understand relatively well, such as molecules moving in air.