Articles | Volume 11, issue 6
https://doi.org/10.5194/esurf-11-1223-2023
https://doi.org/10.5194/esurf-11-1223-2023
Research article
 | 
05 Dec 2023
Research article |  | 05 Dec 2023

Using repeat UAV-based laser scanning and multispectral imagery to explore eco-geomorphic feedbacks along a river corridor

Christopher Tomsett and Julian Leyland

Related authors

Global-scale evaluation of precipitation datasets for hydrological modelling
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024,https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Water level fluctuations drive bank instability in a hypertidal estuary
Andrea Gasparotto, Stephen E. Darby, Julian Leyland, and Paul A. Carling
Earth Surf. Dynam., 11, 343–361, https://doi.org/10.5194/esurf-11-343-2023,https://doi.org/10.5194/esurf-11-343-2023, 2023
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Automatic detection of floating instream large wood in videos using deep learning
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
Earth Surf. Dynam., 13, 167–189, https://doi.org/10.5194/esurf-13-167-2025,https://doi.org/10.5194/esurf-13-167-2025, 2025
Short summary
Investigating uncertainty and parameter sensitivity in bedform analysis by using a Monte Carlo approach
Julius Reich and Axel Winterscheid
Earth Surf. Dynam., 13, 191–217, https://doi.org/10.5194/esurf-13-191-2025,https://doi.org/10.5194/esurf-13-191-2025, 2025
Short summary
Geomorphic imprint of high-mountain floods: insights from the 2022 hydrological extreme across the upper Indus River catchment in the northwestern Himalayas
Abhishek Kashyap, Kristen L. Cook, and Mukunda Dev Behera
Earth Surf. Dynam., 13, 147–166, https://doi.org/10.5194/esurf-13-147-2025,https://doi.org/10.5194/esurf-13-147-2025, 2025
Short summary
A numerical model for duricrust formation by water table fluctuations
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
Earth Surf. Dynam., 13, 119–146, https://doi.org/10.5194/esurf-13-119-2025,https://doi.org/10.5194/esurf-13-119-2025, 2025
Short summary
Width evolution of channel belts as a random walk
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025,https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary

Cited articles

Abelleira Martínez, O. J., Fremier, A. K., Günter, S., Ramos Bendaña, Z., Vierling, L., Galbraith, S. M., and Ordoñez, J. C.: Scaling up functional traits for ecosystem services with remote sensing: concepts and methods, Ecol. Evol., 6, 4359–4371, https://doi.org/10.1002/ece3.2201, 2016. 
Abernethy, B. and Rutherfurd, I. D.: The distribution and strength of riparian tree roots in relation to riverbank reinforcement, Hydrol. Process., 15, 63–79, https://doi.org/10.1002/hyp.152, 2001. 
Adam, E. and Mutanga, O.: Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry, ISPRS J. Photogramm., 64, 612–620, https://doi.org/10.1016/j.isprsjprs.2009.04.004, 2009. 
Adelabu, S. and Dube, T.: Employing ground and satellite-based QuickBird data and random forest to discriminate five tree species in a Southern African Woodland, Geocarto Int., 30, 457–471, https://doi.org/10.1080/10106049.2014.885589, 2015. 
Aguiar, F. C., Segurado, P., Martins, M. J., Bejarano, M. D., Nilsson, C., Portela, M. M., and Merritt, D. M.: The abundance and distribution of guilds of riparian woody plants change in response to land use and flow regulation, J. Appl. Ecol., 55, 2227–2240, https://doi.org/10.1111/1365-2664.13110, 2018. 
Download
Short summary
Vegetation influences how rivers change through time, yet the way in which we analyse vegetation is limited. Current methods collect detailed data at the individual plant level or determine dominant vegetation types across larger areas. Herein, we use UAVs to collect detailed vegetation datasets for a 1 km length of river and link vegetation properties to channel evolution occurring within the study site, providing a new method for investigating the influence of vegetation on river systems.
Share