Articles | Volume 9, issue 6
https://doi.org/10.5194/esurf-9-1423-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1423-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Triggering and propagation of exogenous sediment pulses in mountain channels: insights from flume experiments with seismic monitoring
Marco Piantini
CORRESPONDING AUTHOR
University Grenoble Alpes, CNRS, IRD, Institute for Geosciences and
Environmental Research (IGE), Grenoble, France
University Grenoble Alpes, INRAE, ETNA, Grenoble, France
Florent Gimbert
University Grenoble Alpes, CNRS, IRD, Institute for Geosciences and
Environmental Research (IGE), Grenoble, France
Hervé Bellot
University Grenoble Alpes, INRAE, ETNA, Grenoble, France
Alain Recking
University Grenoble Alpes, INRAE, ETNA, Grenoble, France
Related authors
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Thomas Chauve, Florent Gimbert, Adrien Gilbert, Olivier Gagliardini, Luc Piard, Arnaud Reboud, Olivier Laarman, Paolo Perret, William Boffelli, Pietro Di Sopra, Luca Mondardini, and Fabrizio Troilo
EGUsphere, https://doi.org/10.5194/egusphere-2025-5714, https://doi.org/10.5194/egusphere-2025-5714, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
A field campaign on the Planpincieux Glacier investigated how hidden heterogeneities inside the ice affect its deformation. A borehole logged with optical and acoustic tools and equipped with tilt sensors revealed that these heterogeneities cause strong deformation localization. Such weak zones significantly influence glacier motion, showing that internal structure is key to understanding how glaciers flow.
Juan-Pedro Roldán-Blasco, Adrien Gilbert, Luc Piard, Florent Gimbert, Christian Vincent, Olivier Gagliardini, Anuar Togaibekov, Andrea Walpersdorf, and Nathan Maier
The Cryosphere, 19, 267–282, https://doi.org/10.5194/tc-19-267-2025, https://doi.org/10.5194/tc-19-267-2025, 2025
Short summary
Short summary
The flow of glaciers and ice sheets results from ice deformation and basal sliding driven by gravitational forces. Quantifying the rate at which ice deforms under its own weight is critical for assessing glacier evolution. This study uses borehole instrumentation in an Alpine glacier to quantify ice deformation and constrain ice viscosity in a natural setting. Our results show that the viscosity of ice at 0 °C is largely influenced by interstitial liquid water, which enhances ice deformation.
Mohamad Nasr, Adele Johannot, Thomas Geay, Sebastien Zanker, Jules Le Guern, and Alain Recking
Earth Surf. Dynam., 12, 117–134, https://doi.org/10.5194/esurf-12-117-2024, https://doi.org/10.5194/esurf-12-117-2024, 2024
Short summary
Short summary
Hydrophones are used to monitor sediment transport in the river by listening to the acoustic noise generated by particle impacts on the riverbed. However, this acoustic noise is modified by the river flow and can cause misleading information about sediment transport. This article proposes a model that corrects the measured acoustic signal. Testing the model showed that the corrected signal is better correlated with bedload flux in the river.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Nathan Maier, Florent Gimbert, Fabien Gillet-Chaulet, and Adrien Gilbert
The Cryosphere, 15, 1435–1451, https://doi.org/10.5194/tc-15-1435-2021, https://doi.org/10.5194/tc-15-1435-2021, 2021
Short summary
Short summary
In Greenland, ice motion and the surface geometry depend on the friction at the bed. We use satellite measurements and modeling to determine how ice speeds and friction are related across the ice sheet. The relationships indicate that ice flowing over bed bumps sets the friction across most of the ice sheet's on-land regions. This result helps simplify and improve our understanding of how ice motion will change in the future.
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Cited articles
Allstadt, K. E., Farin, M., Iverson, R. M., Obryk, M. K., Kean, J. W., Tsai,
V. C., Rapstine, T. D., and Logan, M.: Measuring Basal Force Fluctuations of
Debris Flows Using Seismic Recordings and Empirical Green's Functions, J.
Geophys. Res.-Earth Surf., 125, 9, https://doi.org/10.1029/2020JF005590, 2020.
Arattano, M. and Moia, F.: Monitoring the propagation of a debris flow along
a torrent, Hydrolog. Sci. J., 44, 811–823,
https://doi.org/10.1080/02626669909492275, 1999.
Arran, M. I., Mangeney, A., De Rosny, J., Farin, M., Toussaint, R., and
Roche, O.: Laboratory Landquakes: Insights From Experiments Into the
High-Frequency Seismic Signal Generated by Geophysical Granular Flows, J.
Geophys. Res.-Earth Surf., 126, 5, https://doi.org/10.1029/2021JF006172, 2021.
Asano, Y. and Uchida, T.: Detailed documentation of dynamic changes in flow
depth and surface velocity during a large flood in a steep mountain stream,
J. Hydrol., 541, 127–135, https://doi.org/10.1016/j.jhydrol.2016.04.033, 2016.
Bacchi, V., Recking, A., Eckert, N., Frey, P., Piton, G., and Naaim, M.: The
effects of kinetic sorting on sediment mobility on steep slopes, Earth Surf.
Process. Landforms, 39, 1075–1086, https://doi.org/10.1002/esp.3564, 2014.
Badoux, A., Andres, N., and Turowski, J. M.: Damage costs due to bedload transport processes in Switzerland, Nat. Hazards Earth Syst. Sci., 14, 279–294, https://doi.org/10.5194/nhess-14-279-2014, 2014.
Baer, P., Huggel, C., McArdell, B. W., and Frank, F.: Changing debris flow
activity after sudden sediment input: a case study from the Swiss Alps,
Geology Today, 33, 216–223, https://doi.org/10.1111/gto.12211, 2017.
Bakker, M., Gimbert, F., Geay, T., Misset, C., Zanker, S., and Recking, A.:
Field Application and Validation of a Seismic Bedload Transport Model, J.
Geophys. Res.-Earth Surf., 125, 5, https://doi.org/10.1029/2019JF005416, 2020.
Bathurst, J. C., Graf, W. H., and Cao, H. H.: Initiation of sediment
transport in steep channels with coarse bed material, in: Mechanics of
Sediment Transport, edited by: Sumer, B. M. and Müller, A., CRC Press,
207–213, https://doi.org/10.1201/9781003079019-27, 1983.
Benda, L. and Dunne, T.: Stochastic forcing of sediment routing and storage
in channel networks, Water Resour. Res., 33, 2865–2880,
https://doi.org/10.1029/97WR02387, 1997.
Berti, M., Genevois, R., Simoni, A., and Tecca, P. R.: Field observations of
a debris flow event in the Dolomites, Geomorphology, 29, 265–274,
https://doi.org/10.1016/S0169-555X(99)00018-5, 1999.
Bovis, M. J. and Jakob, M.: The role of debris supply conditions in
predicting debris flow activity, 16, 1039–1054, https://doi.org/10.1002/(sici)1096-9837(199910)24:11<1039::aid-esp29>3.0.co;2-u, 1999.
Brummer, C. J. and Montgomery, D. R.: Influence of coarse lag formation on
the mechanics of sediment pulse dispersion in a mountain stream, Squire
Creek, North Cascades, Washington, United States, Water Resour. Res., 42, 7,
https://doi.org/10.1029/2005WR004776, 2006.
Burtin, A., Hovius, N., and Turowski, J. M.: Seismic monitoring of torrential and fluvial processes, Earth Surf. Dynam., 4, 285–307, https://doi.org/10.5194/esurf-4-285-2016, 2016.
Casagli, N., Ermini, L., and Rosati, G.: Determining grain size distribution
of the material composing landslide dams in the Northern Apennines: sampling
and processing methods, Eng. Geol., 69, 83–97,
https://doi.org/10.1016/S0013-7952(02)00249-1, 2003.
Chassagne, R., Maurin, R., Chauchat, J., and Frey, P.: Mobility of
bidisperse mixtures during bedload transport, Phys. Rev. Fluids, 5, 114307,
https://doi.org/10.1103/PhysRevFluids.5.114307, 2020.
Cole, S. E., Cronin, S. J., Sherburn, S., and Manville, V.: Seismic signals
of snow-slurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand,
Geophys. Res. Lett., 36, L09405, https://doi.org/10.1029/2009GL038030, 2009.
Comiti, F., Cadol, D., and Wohl, E.: Flow regimes, bed morphology, and flow
resistance in self-formed step-pool channels, Water Resour. Res., 45, 4,
https://doi.org/10.1029/2008WR007259, 2009.
Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., and Hovius, N.:
Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya,
Science, 362, 53–57, https://doi.org/10.1126/science.aat4981, 2018.
Coviello, V., Arattano, M., Comiti, F., Macconi, P., and Marchi, L.: Seismic
Characterization of Debris Flows: Insights into Energy Radiation and
Implications for Warning, J. Geophys. Res.-Earth Surf., 124, 1440–1463,
https://doi.org/10.1029/2018JF004683, 2019.
Cui, Y. and Parker, G.: Numerical Model of Sediment Pulses and
Sediment-Supply Disturbances in Mountain Rivers, J. Hydraul. Eng., 131,
646–656, https://doi.org/10.1061/(ASCE)0733-9429(2005)131:8(646), 2005.
Cui, Y., Parker, G., Lisle, T. E., Gott, J., Hansler-Ball, M. E., Pizzuto,
J. E., Allmendinger, N. E., and Reed, J. M.: Sediment pulses in mountain
rivers: 1. Experiments, Water Resour. Res., 39, 9,
https://doi.org/10.1029/2002WR001803, 2003.
Curran, J. C. and Wilcock, P. R.: Effect of Sand Supply on Transport Rates
in a Gravel-Bed Channel, J. Hydraul. Eng., 131, 961–967,
https://doi.org/10.1061/(ASCE)0733-9429(2005)131:11(961), 2005.
Davies, T. R. and McSaveney, M. J.: The role of rock fragmentation in the
motion of large landslides, Engineering Geology, 109, 67–79,
https://doi.org/10.1016/j.enggeo.2008.11.004, 2009.
Dudill, A., Lafaye de Micheaux, H., Frey, P., and Church, M.: Introducing
Finer Grains Into Bedload: The Transition to a New Equilibrium, J. Geophys. Res.-Earth Surf., 123, 2602–2619, https://doi.org/10.1029/2018JF004847,
2018.
Farin, M., Tsai, V. C., Lamb, M. P., and Allstadt, K. E.: A physical model
of the high-frequency seismic signal generated by debris flows, Earth Surf.
Process. Landforms, 44, 2529–2543, https://doi.org/10.1002/esp.4677, 2019.
Fontana, G. D. and Marchi, L.: Slope-area relationships and sediment
dynamics in two alpine streams, Hydrol. Process., 17, 73–87,
https://doi.org/10.1002/hyp.1115, 2003.
Frey, P. and Church, M.: How River Beds Move, Science, 325, 1509–1510,
https://doi.org/10.1126/science.1178516, 2009.
GDR MiDi: On dense granular flows, Eur. Phys. J. E., 14, 341–365,
https://doi.org/10.1140/epje/i2003-10153-0, 2004.
Gilbert, G. K.: The transportation of debris by running water, US Geologial
Survey, Washington, DC, 1914.
Gimbert, F., Tsai, V. C., and Lamb, M. P.: A physical model for seismic
noise generation by turbulent flow in rivers, J. Geophys. Res.-Earth Surf.,
119, 2209–2238, https://doi.org/10.1002/2014JF003201, 2014.
Gimbert, F., Fuller, B. M., Lamb, M. P., Tsai, V. C., and Johnson, J. P. L.:
Particle transport mechanics and induced seismic noise in steep flume
experiments with accelerometer-embedded tracers: Experimental Testing of
Seismic Noise Generated by Sediment Transport, Earth Surf. Process.
Landforms, 44, 219–241, https://doi.org/10.1002/esp.4495, 2019.
Govi, M., Maraga, F., and Moia, F.: Seismic detectors for continuous bed
load monitoring in a gravel stream, Hydrological Sciences Journal, 38,
123–132, https://doi.org/10.1080/02626669309492650, 1993.
Gregoretti, C. and Fontana, G. D.: The triggering of debris flow due to
channel-bed failure in some alpine headwater basins of the Dolomites:
analyses of critical runoff, Hydrol. Process., 22, 2248–2263,
https://doi.org/10.1002/hyp.6821, 2008.
Hu, W., Scaringi, G., Xu, Q., Pei, Z., Van Asch, T. W. J., and Hicher,
P.-Y.: Sensitivity of the initiation and runout of flowslides in loose
granular deposits to the content of small particles: An insight from flume
tests, Engineering Geology, 231, 34–44,
https://doi.org/10.1016/j.enggeo.2017.10.001, 2017.
Hu, W., Scaringi, G., Xu, Q., and Huang, R.: Internal Erosion Controls
Failure and Runout of Loose Granular Deposits: Evidence From Flume Tests and
Implications for Postseismic Slope Healing, Geophys. Res. Lett., 45,
5518–5527, https://doi.org/10.1029/2018GL078030, 2018.
Imaizumi, F., Sidle, R. C., Tsuchiya, S., and Ohsaka, O.: Hydrogeomorphic
processes in a steep debris flow initiation zone: Hydrogeomorphology of
debris flow sites, Geophys. Res. Lett., 33, 10,
https://doi.org/10.1029/2006GL026250, 2006.
Iverson, R. M.: The physics of debris flows, Rev. Geophys., 35, 245–296,
https://doi.org/10.1029/97RG00426, 1997.
Iverson, R. M., Reid, M. E., and LaHusen, R. G.: Debris-flow mobilization
from landslides, Annu. Rev. Earth Planet. Sci., 25, 85–138,
https://doi.org/10.1146/annurev.earth.25.1.85, 1997.
Kean, J. W., McCoy, S. W., Tucker, G. E., Staley, D. M., and Coe, J. A.:
Runoff generated debris flows: Observations and modeling of surge
initiation, magnitude, and frequency, J. Geophys. Res.-Earth, 118, 2190–2207, 2013.
Kean, J. W., Coe, J. A., Coviello, V., Smith, J. B., McCoy, S. W., and
Arattano, M.: Estimating rates of debris flow entrainment from ground
vibrations, Geophys. Res. Lett., 42, 6365–6372,
https://doi.org/10.1002/2015GL064811, 2015.
Lai, V. H., Tsai, V. C., Lamb, M. P., Ulizio, T. P., and Beer, A. R.: The
Seismic Signature of Debris Flows: Flow Mechanics and Early Warning at
Montecito, California, Geophys. Res. Lett., 45, 5528–5535,
https://doi.org/10.1029/2018GL077683, 2018.
Lai, Z., Vallejo, L. E., Zhou, W., Ma, G., Espitia, J. M., Caicedo, B., and
Chang, X.: Collapse of Granular Columns With Fractal Particle Size
Distribution: Implications for Understanding the Role of Small Particles in
Granular Flows, Geophys. Res. Lett., 44, 24,
https://doi.org/10.1002/2017GL075689, 2017.
Lamand, E., Piton, G., and Recking, A.: Hydrologie et hydraulique
torrentielle, étude d'un cas pratique: la Roize, hal-02605416, 89 pp., 2017.
Lamb, M. P., Dietrich, W. E., and Venditti, J. G.: Is the critical Shields
stress for incipient sediment motion dependent on channel-bed slope?, J.
Geophys. Res., 113, F02008, https://doi.org/10.1029/2007JF000831, 2008.
Lee, A. J. and Ferguson, R. I.: Velocity and flow resistance in step-pool
streams, Geomorphology, 46, 59–71,
https://doi.org/10.1016/S0169-555X(02)00054-5, 2002.
Lenzi, M. A., Mao, L., and Comiti, F.: Magnitude-frequency analysis of bed
load data in an Alpine boulder bed stream, Water Resour. Res., 40, 7,
https://doi.org/10.1029/2003WR002961, 2004.
Linares-Guerrero, E., Goujon, C., and Zenit, R.: Increased mobility of
bidisperse granular avalanches, J. Fluid Mech., 593, 475–504,
https://doi.org/10.1017/S0022112007008932, 2007.
Lisle, T. E., Pizzuto, J. E., Ikeda, H., Iseya, F., and Kodama, Y.:
Evolution of a sediment wave in an experimental channel, Water Resour. Res.,
33, 1971–1981, https://doi.org/10.1029/97WR01180, 1997.
Loye, A., Jaboyedoff, M., Theule, J. I., and Liébault, F.: Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys, Earth Surf. Dynam., 4, 489–513, https://doi.org/10.5194/esurf-4-489-2016, 2016.
Mao, L. and Lenzi, M. A.: Sediment mobility and bedload transport conditions
in an alpine stream, Hydrol. Process., 21, 1882–1891,
https://doi.org/10.1002/hyp.6372, 2007.
Mao, L., Cavalli, M., Comiti, F., Marchi, L., Lenzi, M. A., and Arattano,
M.: Sediment transfer processes in two Alpine catchments of contrasting
morphological settings, J. Hydrol., 364, 88–98,
https://doi.org/10.1016/j.jhydrol.2008.10.021, 2009.
McCoy, S. W., Kean, J. W., Coe, J. A., Tucker, G. E., Staley, D. M., and
Wasklewicz, T. A.: Sediment entrainment by debris flows: In situ
measurements from the headwaters of a steep catchment, J. Geophys. Res.,
117, F03016, https://doi.org/10.1029/2011JF002278, 2012.
Parker, G., Paola, C., Whipple, K. X., and Mohrig, D.: Alluvial Fans Formed
by Channelized Fluvial and Sheet Flow. I: Theory, J. Hydraul.
Eng., 124, 985–995,
https://doi.org/10.1061/(ASCE)0733-9429(1998)124:10(985), 1998.
Peakall, J., Ashworth, P., and Best, J.: Physical modelling in fluvial
geomorphology: principles, applications and unresolved issues, in: The
scientific nature of geomorphology: proceedings of the 27th Binghamton
Symposium in Geomorphology, John Wiley and Sons, Chichester, 221–253, ISBN 0 471 96811 0, 1996.
Phillips, J., Hogg, A., Kerswell, R., and Thomas, N.: Enhanced mobility of
granular mixtures of fine and coarse particles, Earth Planet. Sc. Lett., 246, 466–480, https://doi.org/10.1016/j.epsl.2006.04.007, 2006.
Piantini, M., Gimbert, F., Bellot, H., and Recking, A.: Video 1: Storage
area with bidomal mixture, https://doi.org/10.5446/51666, 2021a.
Piantini, M., Gimbert, F., Bellot, H., and Recking, A.: Video 2: Storage
area with fine mixture, https://doi.org/10.5446/51981, 2021b.
Piantini, M., Gimbert, F., Bellot, H., and Recking, A.: Video 3: Storage
area with coarse mixture, https://doi.org/10.5446/51982, 2021c.
Piantini, M., Gimbert, F., Bellot, H., and Recking, A.: Video 4: Storage
area with bidomal mixture (low fraction of sand),
https://doi.org/10.5446/51984, 2021d.
Piantini, M., Gimbert, F., Bellot, H., and Recking, A.: Video 5: Sediment
flux during the supplementary experiment, https://doi.org/10.5446/51985,
2021e.
Piantini, M., Gimbert, F., Bellot, H., and Recking, A.: Video 6: Sediment
pulse during the main experiment, https://doi.org/10.5446/51986, 2021f.
Piantini, M., Gimbert, F., Bellot, H., and Recking, A.: Video 7: Solid
discharge peak during the main experiment, https://doi.org/10.5446/51987,
2021g.
Piantini, M., Gimbert, F., Bellot, H., and Recking, A.: Triggering and propagation of exogeneous sediment pulses in mountain channels: insights from flume experiments with seismic monitoring, Zenodo [data set], https://doi.org/10.5281/zenodo.5552189, 2021h.
Piton, G.: Sediment transport control by check dams and open check dams in
Alpine torrents, Doctoral dissertation, Univ. Grenoble Alpes, IRSTEA, Centre
de Grenoble, 2016.
Piton, G. and Recking, A.: The concept of travelling bedload and its
consequences for bedload computation in mountain streams, Earth Surf.
Process. Landforms, 42, 1505–1519, https://doi.org/10.1002/esp.4105, 2017.
Prancevic, J. P. and Lamb, M. P.: Unraveling bed slope from relative
roughness in initial sediment motion: Relative roughness and incipient
motion, J. Geophys. Res.-Earth Surf., 120, 474–489,
https://doi.org/10.1002/2014JF003323, 2015.
Prancevic, J. P., Lamb, M. P., and Fuller, B. M.: Incipient sediment motion
across the river to debris-flow transition, 42, 191–194,
https://doi.org/10.1130/G34927.1, 2014.
Recking, A.: Theoretical development on the effects of changing flow
hydraulics on incipient bed load motion, Water Resour. Res., 45, 4,
https://doi.org/10.1029/2008WR006826, 2009.
Recking, A.: Influence of sediment supply on mountain streams bedload
transport, Geomorphology, 175–176, 139–150,
https://doi.org/10.1016/j.geomorph.2012.07.005, 2012.
Recking, A.: Relations between bed recharge and magnitude of mountain
streams erosions, J. Hydro-environ. Res., 8, 143–152,
https://doi.org/10.1016/j.jher.2013.08.005, 2014.
Recking, A., Frey, P., Paquier, A., Belleudy, P., and Champagne, J. Y.:
Feedback between bed load transport and flow resistance in gravel and cobble
bed rivers, Water Resour. Res., 44, 5, https://doi.org/10.1029/2007WR006219,
2008.
Recking, A., Frey, P., Paquier, A., and Belleudy, P.: An experimental
investigation of mechanisms involved in bed load sheet production and
migration, J. Geophys. Res., 114, F03010,
https://doi.org/10.1029/2008JF000990, 2009.
Rickenmann, D. and Recking, A.: Evaluation of flow resistance in gravel-bed
rivers through a large field data set, Water Resour. Res., 47, 7,
https://doi.org/10.1029/2010WR009793, 2011.
Schneider, J. M., Turowski, J. M., Rickenmann, D., Hegglin, R., Arrigo, S.,
Mao, L., and Kirchner, J. W.: Scaling relationships between bed load
volumes, transport distances, and stream power in steep mountain channels:
Tracer Erlenbach, J. Geophys. Res.-Earth Surf., 119, 533–549,
https://doi.org/10.1002/2013JF002874, 2014.
Schneider, J. M., Rickenmann, D., Turowski, J. M., Schmid, B., and Kirchner,
J. W.: Bed load transport in a very steep mountain stream (Riedbach,
Switzerland): Measurement and prediction, Water Resour. Res., 52,
9522–9541, https://doi.org/10.1002/2016WR019308, 2016.
Schumm, S. A.: The fluvial system, Repr., Blackburn Press, Caldwell, NJ, 338
pp., ISNB 1 930 66579 2, 2003.
Sklar, L. S., Fadde, J., Venditti, J. G., Nelson, P., Wydzga, M. A., Cui,
Y., and Dietrich, W. E.: Translation and dispersion of sediment pulses in
flume experiments simulating gravel augmentation below dams, Water Resour.
Res., 45, 8, https://doi.org/10.1029/2008WR007346, 2009.
Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S.,
Lukens, C. L., and Merces, V.: The problem of predicting the size
distribution of sediment supplied by hillslopes to rivers, Geomorphology,
277, 31–49, https://doi.org/10.1016/j.geomorph.2016.05.005, 2017.
Solari, L. and Parker, G.: The Curious Case of Mobility Reversal in Sediment
Mixtures, J. Hydraul. Eng., 126, 185–197,
https://doi.org/10.1061/(ASCE)0733-9429(2000)126:3(185), 2000.
Stock, J. D. and Dietrich, W. E.: Erosion of steepland valleys by debris
flows, Geol. Soc. Am. Bull., 118, 1125–1148,
https://doi.org/10.1130/B25902.1, 2006.
Sutherland, D. G., Ball, M. H., Hilton, S. J., and Lisle, T. E.: Evolution
of a landslide-induced sediment wave in the Navarro River, California, 13, 1036–1048, https://doi.org/10.1130/0016-7606(2002)114<1036:EOALIS>2.0.CO;2, 2002.
Takahashi, T.: Debris flow: mechanics, prediction and countermeasures, CRC Press/Balkema, Boca Raton, Fla., 551 pp., ISBN 978 1 13 807367 8, 2014.
Tsai, V. C., Minchew, B., Lamb, M. P., and Ampuero, J.-P.: A physical model
for seismic noise generation from sediment transport in rivers, Geophys.
Res. Lett., 39, 2, https://doi.org/10.1029/2011GL050255, 2012.
Turowski, J. M., Yager, E. M., Badoux, A., Rickenmann, D., and Molnar, P.:
The impact of exceptional events on erosion, bedload transport and channel
stability in a step-pool channel, Earth Surf. Process. Landforms, 34,
1661–1673, https://doi.org/10.1002/esp.1855, 2009.
Welch, P.: The use of fast Fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified periodograms,
IEEE Trans. Audio Electroacoust., 15, 70–73,
https://doi.org/10.1109/TAU.1967.1161901, 1967.
Wiberg, P. L. and Smith, J. D.: Velocity distribution and bed roughness in
high-gradient streams, Water Resour. Res., 27, 825–838,
https://doi.org/10.1029/90WR02770, 1991.
Wilcock, P. R., Kenworthy, S. T., and Crowe, J. C.: Experimental study of
the transport of mixed sand and gravel, Water Resour. Res., 37, 3349–3358,
https://doi.org/10.1029/2001WR000683, 2001.
Wohl, E. E.: Mountain rivers revisited, American Geophysical Union,
Washington, DC, 573 pp., ISBN 978 1 118 67168 9, 2010.
Wolcott, J.: Nonfluvial Control of Bimodal Grain-Size Distributions in
River-Bed Gravels, SEPM JSR, 58, 6,
https://doi.org/10.1306/212F8ED6-2B24-11D7-8648000102C1865D, 1988.
Zanuttigh, B. and Lamberti, A.: Instability and surge development in debris
flows, Rev. Geophys., 45, 3, https://doi.org/10.1029/2005RG000175,
2007.
Zhang, M. and McSaveney, M. J.: Rock avalanche deposits store quantitative
evidence on internal shear during runout: Avalanche Deposits Store Shear
Evidence, Geophys. Res. Lett., 44, 8814–8821,
https://doi.org/10.1002/2017GL073774, 2017.
Zhang, Z., Walter, F., McArdell, B. W., Wenner, M., Chmiel, M., de Haas, T.,
and He, S.: Insights From the Particle Impact Model Into the High-Frequency
Seismic Signature of Debris Flows, Geophys. Res. Lett., 48, 1,
https://doi.org/10.1029/2020GL088994, 2021.
Zimmermann, A., Church, M., and Hassan, M. A.: Step-pool stability: Testing
the jammed state hypothesis, J. Geophys. Res., 115, F02008,
https://doi.org/10.1029/2009JF001365, 2010.
Short summary
We carry out laboratory experiments to investigate the formation and propagation dynamics of exogenous sediment pulses in mountain rivers. We show that the ability of a self-formed deposit to destabilize and generate sediment pulses depends on the sand content of the mixture, while each pulse turns out to be formed by a front, a body, and a tail. Seismic measurements reveal a complex and non-unique dependency between seismic power and sediment pulse transport characteristics.
We carry out laboratory experiments to investigate the formation and propagation dynamics of...