Articles | Volume 10, issue 1
https://doi.org/10.5194/esurf-10-1-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-1-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transmissivity and groundwater flow exert a strong influence on drainage density
Elco Luijendijk
CORRESPONDING AUTHOR
independent researcher: Isernhagener Straße 88, 31063 Hanover, Germany
Related authors
Mikhail Tsypin, Viet Dung Nguyen, Mauro Cacace, Guido Blöcher, Magdalena Scheck-Wenderoth, Elco Luijendijk, and Charlotte Krawczyk
EGUsphere, https://doi.org/10.5194/egusphere-2025-4335, https://doi.org/10.5194/egusphere-2025-4335, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Shallow groundwater temperatures are increasing as a consequence of global warming. At the same time, climate models project substantial changes in future groundwater recharge, with impacts on groundwater levels. We investigated the combined effects of these two processes. Our modeling results suggest that decreased annual recharge or increased cold recharge in winter can locally slow groundwater warming, but not sufficiently to stop or reverse the overall warming trend.
Björn Nyberg, Roger Sayre, and Elco Luijendijk
Hydrol. Earth Syst. Sci., 28, 1653–1663, https://doi.org/10.5194/hess-28-1653-2024, https://doi.org/10.5194/hess-28-1653-2024, 2024
Short summary
Short summary
Understanding the spatial and temporal distribution of surface water is crucial for effective water resource management, maintaining ecosystem health and assessing flood risks. This study examined permanent and seasonal rivers and lakes globally over 38 years, uncovering a statistically significant expansion in seasonal extent captured in the new SARL database. The findings offer valuable resources for assessing the impact of changing river and lake extents on ecosystems and human livelihoods.
Christoph Behrens, Elco Luijendijk, Phillip Kreye, Florian Panitz, Merle Bjorge, Marlene Gelleszun, Alexander Renz, Shorash Miro, and Wolfram Rühaak
Adv. Geosci., 58, 109–119, https://doi.org/10.5194/adgeo-58-109-2023, https://doi.org/10.5194/adgeo-58-109-2023, 2023
Short summary
Short summary
The mathematical basics of a numerical code developed specifically for the search of a site for high-level radioactive waste in Germany is presented.
The code is developed in accordance to the specific regulations. First tests of the code are shown.
Kevin Alexander Frings, Elco Luijendijk, István Dunkl, Peter Kukla, Nicolas Villamizar-Escalante, Herfried Madritsch, and Christoph von Hagke
EGUsphere, https://doi.org/10.5194/egusphere-2022-1323, https://doi.org/10.5194/egusphere-2022-1323, 2022
Preprint archived
Short summary
Short summary
We use apatite (U-Th-Sm)/He thermochronologic on detrital grains sampled from a well to unravel the exhumation history of the northern Swiss Molasse Basin and reconcile seemingly contradicting previous studies. With single grain ages and provenance ages, we achieve to narrowly constrain exhumation magnitude and timing and embed previous results into a single consistent thermal history. This includes proof for hydrothermal activity and a contribution to the discussion on exhumation drivers.
Elco Luijendijk, Leo Benard, Sarah Louis, Christoph von Hagke, and Jonas Kley
Solid Earth Discuss., https://doi.org/10.5194/se-2021-22, https://doi.org/10.5194/se-2021-22, 2021
Revised manuscript not accepted
Short summary
Short summary
Our knowledge of the geological history of mountain belts relies strongly on thermochronometers, methods that reconstruct the temperature history of rocks found in mountain belts. Here we provide a new equation that describes the motion of rocks in a simplified, wedge-shaped representation of a mountain belt. The equation can be used to interpret thermochronometers and can help quantify the deformation, uplift and erosion history of mountain belts.
Mikhail Tsypin, Viet Dung Nguyen, Mauro Cacace, Guido Blöcher, Magdalena Scheck-Wenderoth, Elco Luijendijk, and Charlotte Krawczyk
EGUsphere, https://doi.org/10.5194/egusphere-2025-4335, https://doi.org/10.5194/egusphere-2025-4335, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Shallow groundwater temperatures are increasing as a consequence of global warming. At the same time, climate models project substantial changes in future groundwater recharge, with impacts on groundwater levels. We investigated the combined effects of these two processes. Our modeling results suggest that decreased annual recharge or increased cold recharge in winter can locally slow groundwater warming, but not sufficiently to stop or reverse the overall warming trend.
Björn Nyberg, Roger Sayre, and Elco Luijendijk
Hydrol. Earth Syst. Sci., 28, 1653–1663, https://doi.org/10.5194/hess-28-1653-2024, https://doi.org/10.5194/hess-28-1653-2024, 2024
Short summary
Short summary
Understanding the spatial and temporal distribution of surface water is crucial for effective water resource management, maintaining ecosystem health and assessing flood risks. This study examined permanent and seasonal rivers and lakes globally over 38 years, uncovering a statistically significant expansion in seasonal extent captured in the new SARL database. The findings offer valuable resources for assessing the impact of changing river and lake extents on ecosystems and human livelihoods.
Christoph Behrens, Elco Luijendijk, Phillip Kreye, Florian Panitz, Merle Bjorge, Marlene Gelleszun, Alexander Renz, Shorash Miro, and Wolfram Rühaak
Adv. Geosci., 58, 109–119, https://doi.org/10.5194/adgeo-58-109-2023, https://doi.org/10.5194/adgeo-58-109-2023, 2023
Short summary
Short summary
The mathematical basics of a numerical code developed specifically for the search of a site for high-level radioactive waste in Germany is presented.
The code is developed in accordance to the specific regulations. First tests of the code are shown.
Kevin Alexander Frings, Elco Luijendijk, István Dunkl, Peter Kukla, Nicolas Villamizar-Escalante, Herfried Madritsch, and Christoph von Hagke
EGUsphere, https://doi.org/10.5194/egusphere-2022-1323, https://doi.org/10.5194/egusphere-2022-1323, 2022
Preprint archived
Short summary
Short summary
We use apatite (U-Th-Sm)/He thermochronologic on detrital grains sampled from a well to unravel the exhumation history of the northern Swiss Molasse Basin and reconcile seemingly contradicting previous studies. With single grain ages and provenance ages, we achieve to narrowly constrain exhumation magnitude and timing and embed previous results into a single consistent thermal history. This includes proof for hydrothermal activity and a contribution to the discussion on exhumation drivers.
Elco Luijendijk, Leo Benard, Sarah Louis, Christoph von Hagke, and Jonas Kley
Solid Earth Discuss., https://doi.org/10.5194/se-2021-22, https://doi.org/10.5194/se-2021-22, 2021
Revised manuscript not accepted
Short summary
Short summary
Our knowledge of the geological history of mountain belts relies strongly on thermochronometers, methods that reconstruct the temperature history of rocks found in mountain belts. Here we provide a new equation that describes the motion of rocks in a simplified, wedge-shaped representation of a mountain belt. The equation can be used to interpret thermochronometers and can help quantify the deformation, uplift and erosion history of mountain belts.
Cited articles
Abrams, D. M., Lobkovsky, A. E., Petroff, A. P., Straub, K. M., McElroy, B.,
Mohrig, D. C., Kudrolli, A., and Rothman, D. H.: Growth Laws for Channel
Networks Incised by Groundwater Flow, Nat. Geosci., 2, 193–196,
https://doi.org/10.1038/ngeo432, 2009. a
Barkwith, A., Hurst, M. D., Jackson, C. R., Wang, L., Ellis, M. A., and
Coulthard, T. J.: Simulating the Influences of Groundwater on Regional
Geomorphology Using a Distributed, Dynamic, Landscape Evolution Modelling
Platform, Environ. Modell. Softw., 74, 1–20,
https://doi.org/10.1016/j.envsoft.2015.09.001, 2015. a, b
Batelaan, O. and De Smedt, F.: SEEPAGE, a New MODFLOW DRAIN Package,
Ground Water, 42, 576–88, 2004. a
Bogaart, P. W., Tucker, G. E., and de Vries, J. J.: Channel Network
Morphology and Sediment Dynamics under Alternating Periglacial and Temperate
Regimes: A Numerical Simulation Study, Geomorphology, 54, 257–277,
https://doi.org/10.1016/S0169-555X(02)00360-4, 2003. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Bresciani, E., Goderniaux, P., and Batelaan, O.: Hydrogeological Controls of
Water Table-Land Surface Interactions, Geophys. Res. Lett., 43,
9653–9661, https://doi.org/10.1002/2016GL070618, 2016. a, b, c
Brocard, G., Teyssier, C., Dunlap, W. J., Authemayou, C., Simon-Labric, T.,
Cacao-Chiquín, E. N., Gutiérrez-Orrego, A., and Morán-Ical,
S.: Reorganization of a Deeply Incised Drainage: Role of Deformation,
Sedimentation and Groundwater Flow, Basin Res., 23, 631–651,
https://doi.org/10.1111/j.1365-2117.2011.00510.x, 2011. a
Chifflard, P., Blume, T., Maerker, K., Hopp, L., van Meerveld, I., Graef, T.,
Gronz, O., Hartmann, A., Kohl, B., Martini, E., Reinhardt-Imjela, C.,
Reiss, M., Rinderer, M., and Achleitner, S.: How Can We Model Subsurface
Stormflow at the Catchment Scale If We Cannot Measure It?, Hydrol.
Process., 33, 1378–1385, https://doi.org/10.1002/hyp.13407, 2019. a
Crameri, F.: Scientific Colour Maps, Zenodo [code], https://doi.org/10.5281/zenodo.4491293, 2021. a
Culling, W. E. H.: Soil Creep and the Development of Hillside
Slopes, J. Geol., 71, 127–161, https://doi.org/10.1086/626891, 1963. a
de Vries, J.: Seasonal Expansion and Contraction of Stream Networks in
Shallow Groundwater Systems, J. Hydrol., 170, 15–26,
https://doi.org/10.1016/0022-1694(95)02684-H, 1995. a
de Vries, J. J.: The Groundwater Outcrop-Erosion Model; Evolution of the
Stream Network in The Netherlands, J. Hydrol., 29, 43–50,
https://doi.org/10.1016/0022-1694(76)90004-4, 1976. a, b, c
Dunne, T.: Field Studies of Hillslope Flow Processes, in: Hillslope
Hydrology, edited by: Kirkby, M., John Wiley and sons,
Chichester, 227–293, 1978. a
Dunne, T.: Hydrology Mechanics, and Geomorphic Implications of Erosion by
Subsurface Flow, Special Paper of the Geological Society of America, 252,
1–28, https://doi.org/10.1130/SPE252-p1, 1990. a, b
Dunne, T. and Black, R. D.: An Experimental Investigation of Runoff
Production in Permeable Soils, Water Resour. Res., 6, 478–490,
https://doi.org/10.1029/WR006i002p00478, 1970. a
El-husseiny, A.: Improved Packing Model for Functionally Graded
Sand-Fines Mixtures – Incorporation of Fines Cohesive
Packing Behavior, Appl. Sci., 10, 23–26, https://doi.org/10.3390/app10020562,
2020. a
Forchheimer, P.: Über Die Ergiebigkeit von Brunnen, Anlagen Und
Sickerschlitzen, Zeitsch Archit. Ing. Ver., Hannover, 32, 539–563, 1886. a
Gauckler, P.: Etudes Théoriques et Pratiques Sur l'Ecoulement et
Le Mouvement Des Eaux, Comptes Rendues de l'Académie des Sciences,
64, 818–822, 1867. a
Gleeson, T., Smith, L., Moosdorf, N., Hartmann, J., Dürr, H. H., Manning,
A. H., van Beek, L. P. H., and Jellinek, A. M.: Mapping Permeability over
the Surface of the Earth, Geophys. Res. Lett., 38, 1–6,
https://doi.org/10.1029/2010GL045565, 2011. a
Gleeson, T., Moosdorf, N., Hartmann, J., and van Beek, L. P. H.: A Glimpse
beneath Earth's Surface: GLobal HYdrogeology MaPS (GLHYMPS) of
Permeability and Porosity, Geophys. Res. Lett., 41, 1–8,
https://doi.org/10.1002/2014GL059856, 2014. a
Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., and Cardenas, M. B.:
The Global Volume and Distribution of Modern Groundwater, Nat. Geosci.,
9, 161–167, https://doi.org/10.1038/ngeo2590, 2016. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array Programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a, b
Howard, A. D.: Badland Morphology and Evolution: Interpretation Using a
Simulation Model, Earth Surf. Proc. Land., 22, 211–227,
https://doi.org/10.1002/(SICI)1096-9837(199703)22:3<211::AID-ESP749>3.0.CO;2-E, 1997. a
Huang, X. and Niemann, J. D.: Modelling the Potential Impacts of Groundwater
Hydrology on Long-Term Drainage Basin Evolution, Earth Surf. Proc.
Land., 31, 1802–1823, https://doi.org/10.1002/esp.1369, 2006. a, b
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Jasechko, S., Perrone, D., Befus, K. M., Bayani Cardenas, M., Ferguson, G.,
Gleeson, T., Luijendijk, E., McDonnell, J. J., Taylor, R. G., Wada, Y., and
Kirchner, J. W.: Global Aquifers Dominated by Fossil Groundwaters but Wells
Vulnerable to Modern Contamination, Nat. Geosci., 10, 425–429,
https://doi.org/10.1038/ngeo2943, 2017. a
Kashiwaya, K.: Theoretical Investigation of the Time Variation of Drainage
Density, Earth Surf. Proc. Land., 12, 39–46, 1987. a
Kidron, G. J.: Comparing Overland Flow Processes between Semiarid and Humid
Regions: Does Saturation Overland Flow Take Place in Semiarid Regions?,
J. Hydrol., 593, 125624, https://doi.org/10.1016/j.jhydrol.2020.125624,
2021. a
Kuffour, B. N. O., Engdahl, N. B., Woodward, C. S., Condon, L. E., Kollet, S., and Maxwell, R. M.: Simulating coupled surface–subsurface flows with ParFlow v3.5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model, Geosci. Model Dev., 13, 1373–1397, https://doi.org/10.5194/gmd-13-1373-2020, 2020. a
Lacey, G.: Stable Channels in Alluvium, Minutes of the Proceedings of
the Institution of Civil Engineers, 229, 259–292,
https://doi.org/10.1680/imotp.1930.15592, 1930. a
Litwin, D. G., Tucker, G. E., Barnhart, K. R., and Harman, C. J.:
GroundwaterDupuitPercolator: A Landlab Component for Groundwater
Flow, Journal of Open Source Software, 5, 1935, https://doi.org/10.21105/joss.01935,
2020. a
Liu, Y., Wagener, T., Beck, H. E., and Hartmann, A.: What Is the Hydrologically
Effective Area of a Catchment?, Environ. Res. Lett., 15, 104024,
https://doi.org/10.1088/1748-9326/aba7e5, 2020. a
Luijendijk, E.: GOEMod: Groundwater Flow, Overland Flow and Erosion Model, Zenodo [code],
https://doi.org/10.5281/zenodo.5642475, 2021. a, b
Luijendijk, E. and Gleeson, T.: How Well Can We Predict Permeability in
Sedimentary Basins? Deriving and Evaluating Porosity-Permeability Equations
for Noncemented Sand and Clay Mixtures, Geofluids, 15, 67–83,
https://doi.org/10.1111/gfl.12115, 2015. a
Luo, W. and Pederson, D. T.: Hydraulic Conductivity of the High Plains
Aquifer Re-Evaluated Using Surface Drainage Patterns, Geophys. Res.
Lett., 39, 1–6, https://doi.org/10.1029/2011GL050200, 2012. a
Luo, W., Jasiewicz, J., Stepinski, T., Wang, J., Xu, C., and Cang, X.: Spatial
Association between Dissection Density and Environmental Factors over the
Entire Conterminous United States, Geophys. Res. Lett., 43,
692–700, https://doi.org/10.1002/2015GL066941, 2016. a, b, c
Manning, R.: On the Flow of Water in Open Channels and Pipes, Transactions of
the Institution of Civil Engineers of Ireland, 20, 161–207, 1891. a
McKinney, W.: Data Structures for Statistical Computing in Python,
in: Proceedings of the 9th Python in Science Conference, edited by:
van der Walt, S. and Millman, J., 56–61,
https://doi.org/10.25080/Majora-92bf1922-00a, 2010. a
Montgomery, D. R. and Dietrich, W. E.: Channel Initiation and the
Problem of Landscape Scale, Science, 255, 826–830,
https://doi.org/10.1126/science.255.5046.826, 1992. a
Pederson, D. T.: Stream Piracy Revisited: A Groundwater-Sapping Solution, GSA
Today, 11, 4–11, 2001. a
Perron, J. T., Dietrich, W. E., and Kirchner, J. W.: Controls on the Spacing of
First-Order Valleys, J. Geophys. Res.-Earth, 113, F04016,
https://doi.org/10.1029/2007JF000977, 2008. a, b
Perron, J. T., Kirchner, J. W., and Dietrich, W. E.: Formation of Evenly Spaced
Ridges and Valleys, Nature, 460, 502–505, https://doi.org/10.1038/nature08174, 2009. a
Perron, J. T., Richardson, P. W., Ferrier, K. L., and Lapotre, M.: The Root of
Branching River Networks, Nature, 492, 100–103, https://doi.org/10.1038/nature11672,
2012. a
Reback, J., McKinney, W., jbrockmendel, den Bossche, J. V., Augspurger, T.,
Cloud, P., gfyoung, Hawkins, S., Sinhrks, Roeschke, M., Klein, A.,
Petersen, T., Tratner, J., She, C., Ayd, W., Naveh, S., Garcia, M., Schendel,
J., patrick, Hayden, A., Saxton, D., Jancauskas, V., McMaster, A., Gorelli,
M., Battiston, P., Seabold, S., Dong, K., chris-b1, h-vetinari, and
Hoyer, S.: Pandas-Dev/Pandas: Pandas 1.2.2, Zenodo [code], https://doi.org/10.5281/zenodo.4524629,
2021. a
Revil, A.: Mechanical Compaction of Sand/Clay Mixtures, J. Geophys.
Res., 107, 1–11, https://doi.org/10.1029/2001JB000318, 2002. a
Richardson, P. W., Perron, J. T., and Schurr, N. D.: Influences of Climate and
Life on Hillslope Sediment Transport, Geology, 47, 423–426,
https://doi.org/10.1130/G45305.1, 2019. a, b
Schumm, S. A.: Evolution of Draiange Systems and Slopes in Badlands at Perth
Amboy, New Jersey, Bull. Geol. Soc. Am., 67,
579–646, 1956. a
Talling, P. J. and Sowter, M. J.: Drainage Density on Progressively Tilted
Surfaces with Different Gradients, Wheeler Ridge, California, Earth
Surf. Proc. Land., 24, 809–824,
https://doi.org/10.1002/(SICI)1096-9837(199908)24:9<809::AID-ESP13>3.0.CO;2-R, 1999. a
Tucker, G., Lancaster, S., Gasparini, N., and Bras, R.: The Channel-Hillslope
Integrated Landscape Development Model (CHILD), in: Landscape Erosion and
Evolution Modeling, Springer, Boston, 349–388, 2001a. a
Tucker, G. E. and Bras, R. L.: Hillslope Processes, Drainage Density and
Landscape Morphology, Water Resour. Res., 34, 2751–2764,
https://doi.org/10.1029/98WR01474, 1998. a, b
Tucker, G. E. and Hancock, G.: Modelling Landscape Evolution, Earth Surf.
Proc. Land., 35, 28–50, https://doi.org/10.1002/esp.1952, 2010. a, b
Tucker, G. E., Catani, F., Rinaldo, A., and Bras, R. L.: Statistical Analysis
of Drainage Density from Digital Terrain Data, Geomorphology, 36, 187–202,
https://doi.org/10.1016/S0169-555X(00)00056-8, 2001b. a
Twidale, C. R.: River Patterns and Their Meaning, Earth-Sci. Rev., 67,
159–218, https://doi.org/10.1016/j.earscirev.2004.03.001, 2004. a, b
van den Berg, J. H.: Prediction of Alluvial Channel Pattern of Perennial
Rivers, Geomorphology, 12, 259–279, https://doi.org/10.1016/0169-555X(95)00014-V,
1995. a, b, c
van der Meij, W. M., Temme, A., Lin, H. S., Gerke, H. H., and Sommer, M.: On
the Role of Hydrologic Processes in Soil and Landscape Evolution Modeling:
Concepts, Complications and Partial Solutions, Earth-Sci. Rev., 185,
1088–1106, https://doi.org/10.1016/j.earscirev.2018.09.001, 2018. a
Wells, S. G., Dohrenwend, J. C., McFadden, L. D., Turrin, B. D., and Mahrer,
K. D.: Late Cenozoic Landscape Evolution on Lava Flow Surfaces of the
Cima Volcanic Field, Mojave Desert, California, Geol.
Soc. Am. Bull., 96, 1518–1529,
https://doi.org/10.1130/0016-7606(1985)96<1518:LCLEOL>2.0.CO;2, 1985.
a
Whipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., and Ouimet,
W. B.: Timescales of Landscape Response to Divide Migration and Drainage
Capture: Implications for the Role of Divide Mobility in Landscape Evolution,
J. Geophys. Res.-Earth, 122, 248–273,
https://doi.org/10.1002/2016JF003973, 2017. a
Zhang, Y., Slingerland, R., and Duffy, C.: Fully-Coupled Hydrologic Processes
for Modeling Landscape Evolution, Environ. Modell. Softw., 82,
89–107, https://doi.org/10.1016/j.envsoft.2016.04.014, 2016. a, b
Short summary
The distance between rivers is a noticeable feature of the Earth's surface. Previous work has indicated that subsurface groundwater flow may be important for drainage density. Here, I present a new model that combines subsurface and surface water flow and erosion, and demonstrates that groundwater exerts an important control on drainage density. Streams that incise rapidly can capture the groundwater discharge of adjacent streams, which may cause these streams to become dry and stop incising.
The distance between rivers is a noticeable feature of the Earth's surface. Previous work has...