Articles | Volume 11, issue 5
https://doi.org/10.5194/esurf-11-917-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-917-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Refining patterns of melt with forward stratigraphic models of stable Pleistocene coastlines
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Paolo Stocchi
NIOZ – Royal Netherlands Institute for Sea Research, Department of
Estuarine and Delta Systems (EDS), Utrecht University, Den Burg, Texel, the Netherlands
Alessio Rovere
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
Related authors
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, https://doi.org/10.5194/essd-13-1633-2021, 2021
Short summary
Short summary
Sea levels during the last interglacial (130 to 73 ka) are seen as possible process analogs for future sea-level-rise scenarios as our world warms. To this end we catalog previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Alessio Rovere, Deirdre D. Ryan, Matteo Vacchi, Andrea Dutton, Alexander R. Simms, and Colin V. Murray-Wallace
Earth Syst. Sci. Data, 15, 1–23, https://doi.org/10.5194/essd-15-1-2023, https://doi.org/10.5194/essd-15-1-2023, 2023
Short summary
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Karla Rubio-Sandoval, Alessio Rovere, Ciro Cerrone, Paolo Stocchi, Thomas Lorscheid, Thomas Felis, Ann-Kathrin Petersen, and Deirdre D. Ryan
Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, https://doi.org/10.5194/essd-13-4819-2021, 2021
Short summary
Short summary
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level. For this reason, scientists use it as an analog for future climatic conditions. In this paper, we use the World Atlas of Last Interglacial Shorelines database to standardize LIG sea-level data along the coasts of the western Atlantic and mainland Caribbean, identifying 55 unique sea-level indicators.
Ciro Cerrone, Matteo Vacchi, Alessandro Fontana, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4485–4527, https://doi.org/10.5194/essd-13-4485-2021, https://doi.org/10.5194/essd-13-4485-2021, 2021
Short summary
Short summary
The paper is a critical review and standardization of 199 published scientific papers to compile a Last Interglacial sea-level database for the Western Mediterranean sector. In the database, 396 sea-level data points associated with 401 dated samples are included. The relative sea-level data points and associated ages have been ranked on a 0 to 5 scale score.
Kathrine Maxwell, Hildegard Westphal, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4313–4329, https://doi.org/10.5194/essd-13-4313-2021, https://doi.org/10.5194/essd-13-4313-2021, 2021
Short summary
Short summary
Marine Isotope Stage 5e (MIS 5e; the Last Interglacial, 125 ka) represents a period in the Earth’s geologic history when sea level was higher than present. In this paper, a standardized database was produced after screening and reviewing LIG sea-level data from published papers in Southeast Asia. We identified 43 unique sea-level indicators (42 from coral reef terraces and 1 from a tidal notch) and compiled the data in the World Atlas of Last Interglacial Shorelines (WALIS).
Deirdre D. Ryan, Alastair J. H. Clement, Nathan R. Jankowski, and Paolo Stocchi
Earth Syst. Sci. Data, 13, 3399–3437, https://doi.org/10.5194/essd-13-3399-2021, https://doi.org/10.5194/essd-13-3399-2021, 2021
Short summary
Short summary
Studies of ancient sea level and coastlines help scientists understand how coasts will respond to future sea-level rise. This work standardized the published records of sea level around New Zealand correlated with sea-level peaks within the Last Interglacial (~128 000–73 000 years ago) using the World Atlas of Last Interglacial Shorelines (WALIS) database. New Zealand has the potential to provide an important sea-level record with more detailed descriptions and improved age constraint.
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, https://doi.org/10.5194/essd-13-1633-2021, 2021
Short summary
Short summary
Sea levels during the last interglacial (130 to 73 ka) are seen as possible process analogs for future sea-level-rise scenarios as our world warms. To this end we catalog previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Evan J. Gowan, Alessio Rovere, Deirdre D. Ryan, Sebastian Richiano, Alejandro Montes, Marta Pappalardo, and Marina L. Aguirre
Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021, https://doi.org/10.5194/essd-13-171-2021, 2021
Short summary
Short summary
During the last interglacial (130 to 115 ka), global sea level was higher than present. The World Atlas of Last Interglacial Shorelines (WALIS) has been created to document this. In this paper, we have compiled data for southeastern South America. There are landforms that indicate that sea level was 5 to 25 m higher than present during this time period. However, the quality of these data is hampered by limitations on elevation measurements, chronology, and geological descriptions.
Cited articles
Austermann, J., Mitrovica, J. X., Huybers, P., and Rovere, A.: Detection of a
dynamic topography signal in last interglacial sea-level records, Sci.
Adv., 3, e1700457, https://doi.org/10.1126/sciadv.1700457, 2017. a
Barlow, N. L. M., McClymont, E. L., Whitehouse, P. L., Stokes, C. R., Jamieson, S. S. R., Woodroffe, S. A., Bentley, M. J., Callard, S. L., Cofaigh, C. Ó., Evans, D. J. A., Horrocks, J. R., Lloyd, J. M., Long, A. J., Margold, M., Roberts, D. H., and Sanchez-Montes, M. L.: Lack of evidence for a substantial sea-level
fluctuation within the Last Interglacial, Nat. Geosci., 11, 627–634,
2018. a, b, c
Barrett, S. J. and Webster, J. M.: Holocene evolution of the Great Barrier
Reef: Insights from 3D numerical modelling, Sediment. Geol., 265–266,
56–71, https://doi.org/10.1016/j.sedgeo.2012.03.015, 2012. a
Barrett, S. J. and Webster, J. M.: Reef Sedimentary Accretion Model (ReefSAM):
Understanding coral reef evolution on Holocene time scales using 3D
stratigraphic forward modelling, Mar. Geol., 391, 108–126,
https://doi.org/10.1016/j.margeo.2017.07.007, 2017. a, b
Battistini, R.: Etude géomorphologique de l'Extrême-Sud de Madagascar,
Ph.D. thesis, University of Madagascar, Toulouse, 1964. a
BieicipFranlab: OpenFlow Suite, IFP Energies nouvelles, 2021. a
Bintanja, R. and van de Wal, R. S. W.: North American ice-sheet dynamics and
the onset of 100,000-year glacial cycles, Nature, 454, 869–872,
https://doi.org/10.1038/nature07158, 2008. a
Boyden, P., Weil-Accardo, J., Deschamps, P., Godeau, N., Jaosedy, N., Guihou,
A., Rajaonarivelo, M. N., O’Leary, M., Humblet, M., and Rovere, A.:
Revisiting Battistini: Pleistocene Coastal Evolution of Southwestern
Madagascar, Open Quaternary, 8, 14, https://doi.org/10.5334/oq.112, 2022. a, b, c, d, e, f, g, h, i, j, k, l
Boyden, P., Stocchi, P., and Rovere, A.: Electronic Supplementary for:
Refining patterns of melt with forward stratigraphic models on stable
Pleistocene coastlines, Zenodo [data set], https://doi.org/10.5281/zenodo.7565917, 2023. a
Bristow, C., Lancaster, N., and Duller, G.: Combining ground penetrating radar
surveys and optical dating to determine dune migration in Namibia, J. Geol. Soc. London, 162, 315–321, https://doi.org/10.1144/0016-764903-120, 2005. a
Burgess, P. M. and Pollitt, D. A.: The origins of shallow-water carbonate
lithofacies thickness distributions: one-dimensional forward modelling of
relative sea-level and production rate control, Sedimentology, 59, 57–80,
https://doi.org/10.1111/j.1365-3091.2011.01303.x, 2012. a
Côté-Laurin, M.-C., Benbow, S., and Erzini, K.: The short-term impacts
of a cyclone on seagrass communities in Southwest Madagascar, Cont.
Shelf Res., 138, 132–141, 2017. a
Creveling, J. R., Mitrovica, J. X., Hay, C. C., Austermann, J., and Kopp,
R. E.: Revisiting tectonic corrections applied to Pleistocene sea-level
highstands, Quaternary Sci. Rev., 111, 72–80,
https://doi.org/10.1016/j.quascirev.2015.01.003, 2015. a
de Boer, B., van de Wal, R. S. W., Lourens, L. J., Bintanja, R., and Reerink,
T. J.: A continuous simulation of global ice volume over the past 1 million
years with 3-D ice-sheet models, Clim. Dynam., 41, 1365–1384,
https://doi.org/10.1007/s00382-012-1562-2, 2013. a, b
de Boer, B., Stocchi, P., and van de Wal, R. S. W.: A fully coupled 3-D ice-sheet–sea-level model: algorithm and applications, Geosci. Model Dev., 7, 2141–2156, https://doi.org/10.5194/gmd-7-2141-2014, 2014. a
de Gelder, G., Jara-Muñoz, J., Melnick, D., Fernández-Blanco, D., Rouby, H.,
Pedoja, K., Husson, L., Armijo, R., and Lacassin, R.: How do sea-level curves
influence modeled marine terrace sequences?, Quaternary Sci. Rev., 229,
106132, https://doi.org/10.1016/j.quascirev.2019.106132, 2020. a
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future
sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016. a
Durrant, T., Hemer, M., Smith, G., Trenham, C., and Greenslade, D.: CAWCR Wave
Hindcast-Aggregated Collection,
http://hdl.handle.net/102.100.100/13165?index=1 (last access: 1 November 2021), 2013. a
Dutton, A., Webster, J. M., Zwartz, D., Lambeck, K., and Wohlfarth, B.:
Tropical tales of polar ice: evidence of Last Interglacial polar ice sheet
retreat recorded by fossil reefs of the granitic Seychelles islands,
Quaternary Sci. Rev., 107, 182–196,
https://doi.org/10.1016/j.quascirev.2014.10.025, 2015. a
Dyer, B., Austermann, J., D'Andrea, W. J., Creel, R. C.,
Sandstrom, M. R., Cashman, M., Rovere, A., and Raymo, M. E.: Sea-level trends
across The Bahamas constrain peak last interglacial ice melt, P. Natl. Acad. Sci., 118, 33, https://doi.org/10.1073/pnas.2026839118, 2021. a, b, c
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R.,
Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.:
Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature,
566, 58–64, https://doi.org/10.1038/s41586-019-0901-4, 2019. a
Enos, P. and Franseen, E.: Sedimentary parameters for computer modeling,
Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter
Definition: Kansas Geological Survey, Bulletin, 233, 63–99, 1991. a
Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A., and Watkinson, A. R.:
Hurricanes and Caribbean coral reefs: impacts, recovery patterns, and role in
long‐term decline, Ecology, 86, 174–184, https://doi.org/10.1890/04-0141, 2005. a
Gischler, E., Hudson, J. H., Humblet, M., Braga, J. C., Schmitt, D., Isaack,
A., Eisenhauer, A., and Camoin, G. F.: Holocene and Pleistocene fringing reef
growth and the role of accommodation space and exposure to waves and currents
(Bora Bora, Society Islands, French Polynesia), Sedimentology, 66, 305–328,
https://doi.org/10.1111/sed.12533, 2019. a
Govin, A., Braconnot, P., Capron, E., Cortijo, E., Duplessy, J.-C., Jansen, E., Labeyrie, L., Landais, A., Marti, O., Michel, E., Mosquet, E., Risebrobakken, B., Swingedouw, D., and Waelbroeck, C.: Persistent influence of ice sheet melting on high northern latitude climate during the early Last Interglacial, Clim. Past, 8, 483–507, https://doi.org/10.5194/cp-8-483-2012, 2012. a
Granjeon, D., Joseph, P., Harbaugh, J. W., Watney, W. L., Rankey, E. C.,
Slingerland, R., Goldstein, R. H., and Franseen, E. K.: Concepts and
Applications of A 3-D Multiple Lithology, Diffusive Model in Stratigraphic
Modeling, Vol. 62, SEPM Society for Sedimentary Geology,
https://doi.org/10.2110/pec.99.62.0197, 1999. a, b
Holthuijsen, L. H.: Waves in Oceanic and Coastal Waters, Cambridge University
Press, Cambridge, https://doi.org/10.1017/CBO9780511618536, 2007. a
Kolodka, C., Vennin, E., Bourillot, R., Granjeon, D., and Desaubliaux, G.:
Stratigraphic modelling of platform architecture and carbonate production: a
Messinian case study (Sorbas Basin, SE Spain), Basin Res., 28, 658–684,
https://doi.org/10.1111/bre.12125, 2016. a
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer,
M.: Probabilistic assessment of sea level during the last interglacial stage,
Nature, 462, 863–867, https://doi.org/10.1038/nature08686, 2009. a
Lanteaume, C., Fournier, F., Pellerin, M., and Borgomano, J.: Testing geologic
assumptions and scenarios in carbonate exploration: Insights from integrated
stratigraphic, diagenetic, and seismic forward modeling, The Leading Edge,
37, 672–680, https://doi.org/10.1190/tle37090672.1, 2018. a
Lee, E. Y., Kominz, M., Reuning, L., Gallagher, S. J., Takayanagi, H., Ishiwa,
T., Knierzinger, W., and Wagreich, M.: Quantitative compaction trends of
Miocene to Holocene carbonates off the west coast of Australia, Aust.
J. Earth Sci., 68, 1149–1161,
https://doi.org/10.1080/08120099.2021.1915867, 2021. a
Malatesta, L. C., Finnegan, N. J., Huppert, K. L., and Carreño, E. I.: The
influence of rock uplift rate on the formation and preservation of individual
marine terraces during multiple sea-level stands, Geology, 50, 101–105,
https://doi.org/10.1130/g49245.1, 2022. a, b
Montaggioni, L. F.: History of Indo-Pacific coral reef systems since the last
glaciation: Development patterns and controlling factors, Earth-Sci.
Rev., 71, 1–75, https://doi.org/10.1016/j.earscirev.2005.01.002, 2005. a, b
Montaggioni, L. F. and Braithwaite, C. J.: Quaternary coral reef systems:
history, development processes and controlling factors, Elsevier, ISBN 9780080932767, 2009. a
Montaggioni, L. F. and Hoang, C.: The last interglacial high sea level in the
granitic Seychelles, Indian Ocean, Palaeogeogr. Palaeocl., 64, 79–91, 1988. a
Montaggioni, L. F., Borgomano, J., Fournier, F., and Granjeon, D.: Quaternary
atoll development: New insights from the two‐dimensional stratigraphic
forward modelling of Mururoa Island (Central Pacific Ocean), Sedimentology,
62, 466–500, https://doi.org/10.1111/sed.12175, 2015. a, b, c, d, e, f, g, h
Noble, T., Rohling, E., Aitken, A. R. A., Bostock, H. C., Chase, Z., Gomez, N.,
Jong, L. M., King, M. A., Mackintosh, A. N., and McCormack, F.: The
sensitivity of the Antarctic ice sheet to a changing climate: past, present,
and future, Rev. Geophys., 58, e2019RG000663,
https://doi.org/10.1029/2019RG000663, 2020. a
O’Leary, M. J., Hearty, P. J., Thompson, W. G., Raymo, M. E., Mitrovica,
J. X., and Webster, J. M.: Ice sheet collapse following a prolonged period of
stable sea level during the last interglacial, Nat. Geosci., 6,
796–800, https://doi.org/10.1038/ngeo1890, 2013. a, b, c
Pall, J., Chandra, R., Azam, D., Salles, T., Webster, J. M., Scalzo, R., and
Cripps, S.: Bayesreef: A Bayesian inference framework for modelling reef
growth in response to environmental change and biological dynamics,
Environ. Modell. Softw., 125, 104610,
https://doi.org/10.1016/j.envsoft.2019.104610, 2020. a
Paulay, G. and McEdward, L. R.: A simulation model of island reef morphology:
the effects of sea level fluctuations, growth, subsidence and erosion, Coral
Reefs, 9, 51–62, https://doi.org/10.1007/bf00368800, 1990. a, b
Revil, A., Grauls, D., and Brévart, O.: Mechanical compaction of sand/clay
mixtures, J. Geophys. Res.-Sol. Ea., 107, 2293,
https://doi.org/10.1029/2001JB000318, 2002. a
Roelvink, J., Reniers, A. J. H. M., van Dongeren, A. R., van Thiel de Vries, J.
S. M., McCall, R. T., and Lescinski, J.: Modelling storm impacts on beaches,
dunes and barrier islands, Coast. Eng., 56, 1133–1152,
https://doi.org/10.1016/j.coastaleng.2009.08.006, 2009. a
Rovere, A., Raymo, M. E., Vacchi, M., Lorscheid, T., Stocchi, P., Gomez-Pujol,
L., Harris, D. L., Casella, E., O'Leary, M. J., and Hearty, P. J.: The
analysis of Last Interglacial (MIS 5e) relative sea-level indicators:
Reconstructing sea-level in a warmer world, Earth-Sci. Rev., 159,
404–427, https://doi.org/10.1016/j.earscirev.2016.06.006, 2016. a
Salles, T., Pall, J., Webster, J. M., and Dechnik, B.: Exploring coral reef responses to millennial-scale climatic forcings: insights from the 1-D numerical tool pyReef-Core v1.0, Geosci. Model Dev., 11, 2093–2110, https://doi.org/10.5194/gmd-11-2093-2018, 2018. a
Simms, A. R., Anderson, J. B., DeWitt, R., Lambeck, K., and Purcell, A.:
Quantifying rates of coastal subsidence since the last interglacial and the
role of sediment loading, Global Planet. Change, 111, 296–308,
https://doi.org/10.1016/j.gloplacha.2013.10.002, 2013. a
Spada, G. and Stocchi, P.: SELEN: A Fortran 90 program for solving the
“sea-level equation”, Comput. Geosci., 33, 538–562,
https://doi.org/10.1016/j.cageo.2006.08.006, 2007. a
Stone, E. J., Capron, E., Lunt, D. J., Payne, A. J., Singarayer, J. S., Valdes, P. J., and Wolff, E. W.: Impact of meltwater on high-latitude early Last Interglacial climate, Clim. Past, 12, 1919–1932, https://doi.org/10.5194/cp-12-1919-2016, 2016. a
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng,
R., Ford, H. L., Hönisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N.,
Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Foster, G. L.,
Goddéris, Y., Huber, B. T., Ivany, L. C., Kirtland Turner, S., Lunt,
D. J., McElwain, J. C., Mills, B. J. W., Otto-Bliesner, B. L., Ridgwell, A.,
and Zhang, Y. G.: Past climates inform our future, Science, 370, 6517,
https://doi.org/10.1126/science.aay3701, 2020. a
Trudgill, S. T., Stoddart, D. R., and Westoll, T. S.: Surface lowering and
landform evolution on Aldabra, Philosophical Transactions of the Royal
Society of London. B, Biological Sciences, 286, 35–45,
https://doi.org/10.1098/rstb.1979.0014, 1979. a, b
Vyverberg, K., Dechnik, B., Dutton, A., Webster, J. M., Zwartz, D., and
Portell, R. W.: Episodic reef growth in the granitic Seychelles during the
Last Interglacial: implications for polar ice sheet dynamics, Mar. Geol.,
399, 170–187, https://doi.org/10.1016/j.margeo.2018.02.010, 2018. a
Warrlich, G., Waltham, D., and Bosence, D.: Quantifying the sequence
stratigraphy and drowning mechanisms of atolls using a new 3‐D forward
stratigraphic modelling program (CARBONATE 3D), Basin Res., 14, 379–400,
https://doi.org/10.1046/j.1365-2117.2002.00181.x, 2002. a
Warrlich, G., Bosence, D., Waltham, D., Wood, C., Boylan, A., and Badenas, B.:
3D stratigraphic forward modelling for analysis and prediction of carbonate
platform stratigraphies in exploration and production, Mar. Petrol.
Geol., 25, 35–58, https://doi.org/10.1016/j.marpetgeo.2007.04.005, 2008. a
Weil-Accardo, J., Boyden, P., Rovere, A., Godeau, N., Jaosedy, N., Guihou, A.,
Humblet, M., Rajaonarivelo, M., Austermann, J., and Deschamps, P.: New
datings and elevations of a fossil reef in Lembetabe, southwest Madagascar:
eustatic and tectonic implications, Quaternary Sci. Rev., 313,
108197, https://doi.org/10.1016/j.quascirev.2023.108197, 2023. a
Woodroffe, C. D.: Coasts: Form, Process and Evolution, Cambridge University
Press, Cambridge, https://doi.org/10.1017/CBO9781316036518, 2002. a
Woodroffe, C. D. and Webster, J. M.: Coral reefs and sea-level change, Mar. Geol., 352, 248–267, https://doi.org/10.1016/j.margeo.2013.12.006,
2014. a
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Preservation bias often hampers the extraction of sea level changes from the stratigraphic...