Articles | Volume 12, issue 1
https://doi.org/10.5194/esurf-12-301-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-301-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flexural isostatic response of continental-scale deltas to climatically driven sea level changes
Sara Polanco
CORRESPONDING AUTHOR
EarthByte Group, School of Geosciences, University of Sydney, Camperdown, NSW, Australia
Mike Blum
Earth, Energy & Environment Center, The University of Kansas, Lawrence, KS, USA
Tristan Salles
EarthByte Group, School of Geosciences, University of Sydney, Camperdown, NSW, Australia
Bruce C. Frederick
Earth, Energy & Environment Center, The University of Kansas, Lawrence, KS, USA
Rebecca Farrington
AuScope, School of Geography, Earth & Atmospheric Sciences, University of Melbourne, Parkville, VIC, Australia
Xuesong Ding
Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
Ben Mather
EarthByte Group, School of Geosciences, University of Sydney, Camperdown, NSW, Australia
Claire Mallard
EarthByte Group, School of Geosciences, University of Sydney, Camperdown, NSW, Australia
Louis Moresi
Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
Related authors
No articles found.
Beatriz Hadler Boggiani, Tristan Salles, Claire Mallard, and Nicholas Atwood
Earth Surf. Dynam., 13, 683–704, https://doi.org/10.5194/esurf-13-683-2025, https://doi.org/10.5194/esurf-13-683-2025, 2025
Short summary
Short summary
We studied how erosion and tectonic forces can affect the exposure and preservation of copper deposits formed in subduction zones in the past 65 Myr. We used a global model that simulates landscape changes over time based on climate and elevation changes. Our findings show that climate is more important in preserving or exposing copper deposits than previously described. We help improve methods for locating copper deposits, offering new insights for mineral exploration.
Yinbing Zhu, Patrice Rey, and Tristan Salles
EGUsphere, https://doi.org/10.5194/egusphere-2025-1585, https://doi.org/10.5194/egusphere-2025-1585, 2025
Short summary
Short summary
We use computer models to study how landscapes respond to changes in rainfall and tectonic uplift. We find that rainfall rate changes produce unique slope change reversals near the headwaters, which differ from the simpler responses caused by uplift rate changes. These reversals are more pronounced when hillslope diffusion is dominant. These findings help us understand how climate and tectonic forcing shape the landscape differently and may allow scientists to tell their effects apart in nature.
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023, https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Short summary
We present new tools in the landscape evolution model Badlands to simulate 10Be production, erosion and transport. These tools are applied to a source-to-sink system in the SW French Alps, where the model is calibrated. We propose a model that fits river incision rates and 10Be concentrations in sediments, and we show that 10Be in deep marine sediments is a signal with multiple contributions that cannot be easily interpreted in terms of climate forcing.
Till Sachau, Haibin Yang, Justin Lang, Paul D. Bons, and Louis Moresi
Geosci. Model Dev., 15, 8749–8764, https://doi.org/10.5194/gmd-15-8749-2022, https://doi.org/10.5194/gmd-15-8749-2022, 2022
Short summary
Short summary
Knowledge of the internal structures of the major continental ice sheets is improving, thanks to new investigative techniques. These structures are an essential indication of the flow behavior and dynamics of ice transport, which in turn is important for understanding the actual impact of the vast amounts of water trapped in continental ice sheets on global sea-level rise. The software studied here is specifically designed to simulate such structures and their evolution.
Claire A. Mallard and Tristan Salles
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-89, https://doi.org/10.5194/esurf-2021-89, 2021
Preprint withdrawn
Short summary
Short summary
Using landscape evolution models integrating mantle dynamics, climate, eustatism and surface processes, we break down a previous idea that considers mantle flow as the main driver of the pulse of sedimentation in the Orange Basin, SA, over the last 30 Ma. Instead, climate impact seems to be a predominant mechanism. We also show that sediment flux and landscape evolution in the region is the product of interlinked processes accounting for both lithology variations, mantle dynamics and climate.
Gilles Brocard, Jane Kathrin Willenbring, Tristan Salles, Michael Cosca, Axel Guttiérez-Orrego, Noé Cacao Chiquín, Sergio Morán-Ical, and Christian Teyssier
Earth Surf. Dynam., 9, 795–822, https://doi.org/10.5194/esurf-9-795-2021, https://doi.org/10.5194/esurf-9-795-2021, 2021
Short summary
Short summary
The rise of a mountain affects the circulation of water, both in the atmosphere and over the land surface, thereby affecting the erosion of the land surface. We document how the rise of a mountain in central Guatemala has affected the erosion of an older range nearby. The new range intercepts precipitation formerly delivered to the older range. River response to the uplift of the new range has decreased incision across the older one. Both have reduced hillslope erosion over the old range.
Cited articles
Allen, P. A. and Allen, J. R.: Basin Analysis: Principles and Application to Petroleum Play Assessment, Wiley, ISBN 978-0-470-67376-8, 2005.
Armstrong, C., Mohrig, D., Hess, T., George, T., and Straub, K. M.: Influence of growth faults on coastal fluvial systems: Examples from the late Miocene to Recent Mississippi River Delta, Sediment. Geol., 301, 120–132, https://doi.org/10.1016/j.sedgeo.2013.06.010, 2014.
Athy, L. F.: Density, Porosity, and Compaction of Sedimentary Rocks1, AAPG Bull., 14, 1–24, https://doi.org/10.1306/3d93289e-16b1-11d7-8645000102c1865d, 1930.
Bevis, M., Alsdorf, D., Kendrick, E., Fortes, L. P., Forsberg, B., Smalley Jr., R., and Becker, J.: Seasonal fluctuations in the mass of the Amazon River system and Earth's elastic response, Geophys. Res. Lett., 32, L16308, https://doi.org/10.1029/2005GL023491, 2005.
Blum, M., Martin, J., Milliken, K., and Garvin, M.: Paleovalley systems: Insights from Quaternary analogs and experiments, Earth-Sci. Rev., 116, 128–169, https://doi.org/10.1016/j.earscirev.2012.09.003, 2013.
Blum, M. and Pecha, M.: Mid-Cretaceous to Paleocene North American drainage reorganization from detrital zircons, Geology, 42, 607–610, https://doi.org/10.1130/g35513.1, 2014.
Blum, M. D., Tomkin, J. H., Purcell, A., and Lancaster, R. R.: Ups and downs of the Mississippi Delta, Geology, 36, 675–678, https://doi.org/10.1130/g24728a.1, 2008.
Blum, M. D., Hattier-Womack, J., Kneller, B., Martinsen, O. J., and McCaffrey, B.: Climate Change, Sea-Level Change, and Fluvial Sediment Supply to Deepwater Depositional Systems, in: External Controls on Deep-Water Depositional Systems, SEPM Society for Sedimentary Geology, https://doi.org/10.2110/sepmsp.092, 2009.
Blum, M. D., Milliken, K. T., Pecha, M. A., Snedden, J. W., Frederick, B. C., and Galloway, W. E.: Detrital-zircon records of Cenomanian, Paleocene, and Oligocene Gulf of Mexico drainage integration and sediment routing: Implications for scales of basin-floor fans, Geosphere, 13, 2169–2205, https://doi.org/10.1130/ges01410.1, 2017.
Carvajal, C., Steel, R., and Petter, A.: Sediment supply: The main driver of shelf-margin growth, Earth-Sci. Rev., 96, 221–248, https://doi.org/10.1016/j.earscirev.2009.06.008, 2009.
Chappell, J.: Late Quaternary glacio- and hydro-isostasy, on a layered earth, Quat. Res., 4, 405–428, https://doi.org/10.1016/0033-5894(74)90037-4, 1974.
Clark, J. A., Farrell, W. E., and Peltier, W. R.: Global changes in postglacial sea level: A numerical calculation, Quat. Res., 9, 265–287, https://doi.org/10.1016/0033-5894(78)90033-9, 1978.
Cramer, B. S., Miller, K. G., Barrett, P. J., and Wright, J. D.: Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and ) with sea level history, J. Geophys. Res.-Oceans, 116, C12023, https://doi.org/10.1029/2011JC007255, 2011.
Doust, H. and Omatbola, E.: Niger Delta, in: Divergent/Passive Margin Basins, 2009/05/01 ed., edited by: Edwards, J. D. and Santogrossi, P. A., AAPG, 201–238, 1990.
Driscoll, N. W. and Karner, G. D.: Flexural deformation due to Amazon Fan loading: A feedback mechanism affecting sediment delivery to margins, Geology, 22, 1015–1018, https://doi.org/10.1130/0091-7613(1994)022<1015:Fddtaf>2.3.Co;2, 1994.
Feng, J., Buffler, R. T., and Kominz, M. A.: Laramide orogenic influence on late Mesozoic-Cenozoic subsidence history, western deep Gulf of Mexico basin, Geology, 22, 359–362, https://doi.org/10.1130/0091-7613(1994)022<0359:Loiolm>2.3.Co;2, 1994.
Frederick, B. C., Blum, M., Fillon, R., and Roberts, H.: Resolving the contributing factors to Mississippi Delta subsidence: Past and Present, Basin Res., 31, 171–190, https://doi.org/10.1111/bre.12314, 2019.
Galloway, W. E.: Genetic Stratigraphic Sequences in Basin Analysis II: Application to Northwest Gulf of Mexico Cenozoic Basin1, AAPG Bull., 73, 143–154, https://doi.org/10.1306/703c9afa-1707-11d7-8645000102c1865d, 1989.
Ivins, E. R., Dokka, R. K., and Blom, R. G.: Post-glacial sediment load and subsidence in coastal Louisiana, Geophys. Res. Lett., 34, L16303, https://doi.org/10.1029/2007GL030003, 2007.
Jackson, M. P. A. and Hudec, M. R.: Salt Tectonics: Principles and Practice, Cambridge University Press, Cambridge, ISBN 9781139003988, 2017.
Jankowski, K. L., Törnqvist, T. E., and Fernandes, A. M.: Vulnerability of Louisiana's coastal wetlands to present-day rates of relative sea-level rise, Nat. Commun., 8, 14792, https://doi.org/10.1038/ncomms14792, 2017.
Johannessen, E. P. and Steel, R. J.: Shelf-margin clinoforms and prediction of deepwater sands, Basin Res., 17, 521–550, https://doi.org/10.1111/j.1365-2117.2005.00278.x, 2005.
Jouet, G., Hutton, E. W. H., Syvitski, J. P. M., and Berné, S.: Response of the Rhône deltaic margin to loading and subsidence during the last climatic cycle, Comput. Geosci., 34, 1338–1357, https://doi.org/10.1016/j.cageo.2008.02.003, 2008.
Keogh, M. E., Törnqvist, T. E., Kolker, A. S., Erkens, G., and Bridgeman, J. G.: Organic Matter Accretion, Shallow Subsidence, and River Delta Sustainability, J. Geophys Res.-Earth, 126, e2021JF006231, https://doi.org/10.1029/2021JF006231, 2021.
King, R., Backé, G., Tingay, M., Hillis, R., and Mildren, S.: Stress deflections around salt diapirs in the Gulf of Mexico, Geological Society, London, Special Publications, 367, 141–153, https://doi.org/10.1144/SP367.10, 2012.
Klausen, T. G., Nyberg, B., and Helland-Hansen, W.: The largest delta plain in Earth's history, Geology, 47, 470–474, https://doi.org/10.1130/g45507.1, 2019.
Kuchar, J., Milne, G., Wolstencroft, M., Love, R., Tarasov, L., and Hijma, M.: The Influence of Sediment Isostatic Adjustment on Sea Level Change and Land Motion Along the U.S. Gulf Coast, J. Geophys. Res.-Solid, 123, 780–796, https://doi.org/10.1002/2017JB014695, 2018.
Lambeck, K. and Nakada, M.: Late Pleistocene and Holocene sea-level change along the Australian coast, Palaeogeogr. Palaeocl., 89, 143–176, https://doi.org/10.1016/0031-0182(90)90056-D, 1990.
Lambeck, K.: Glacial isostasy and water depths in the Late Devensian and Holocene on the Scottish Shelf west of the Outer Hebrides, J. Quat. Sci., 10, 83–86, https://doi.org/10.1002/jqs.3390100109, 1995.
Lambeck, K., Purcell, A., Johnston, P., Nakada, M., and Yokoyama, Y.: Water-load definition in the glacio-hydro-isostatic sea-level equation, Quat. Sci. Rev., 22, 309–318, https://doi.org/10.1016/S0277-3791(02)00142-7, 2003.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA, 111, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014.
Martin, J., Fernandes, A. M., Pickering, J., Howes, N., Mann, S., and McNeil, K.: The Stratigraphically Preserved Signature of Persistent Backwater Dynamics in a Large Paleodelta System: The Mungaroo Formation, North West Shelf, Australia, J. Sed. Res., 88, 850–872, https://doi.org/10.2110/jsr.2018.38, 2018.
Mason, C. C., Romans, B. W., Stockli, D. F., Mapes, R. W., and Fildani, A.: Detrital zircons reveal sea-level and hydroclimate controls on Amazon River to deep-sea fan sediment transfer, Geology, 47, 563–567, https://doi.org/10.1130/g45852.1, 2019.
McKenzie, D.: Some remarks on the development of sedimentary basins, Earth Planet. Sc. Lett., 40, 25–32, https://doi.org/10.1016/0012-821X(78)90071-7, 1978.
Meckel, T. A., Ten Brink, U. S., and Williams, S. J.: Sediment compaction rates and subsidence in deltaic plains: numerical constraints and stratigraphic influences, Basin Res., 19, 19–31, https://doi.org/10.1111/j.1365-2117.2006.00310.x, 2007.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records, Sci. Adv., 6, eaaz1346, https://doi.org/10.1126/sciadv.aaz1346, 2020.
Mitrovica, J. X. and Peltier, W. R.: On postglacial geoid subsidence over the equatorial oceans, J. Geophys. Res.-Sol. Ea., 96, 20053–20071, https://doi.org/10.1029/91JB01284, 1991.
Mitrovica, J. X. and Milne, G. A.: On post-glacial sea level: I. General theory, Geophys. J. Int., 154, 253–267, https://doi.org/10.1046/j.1365-246X.2003.01942.x, 2003.
Morley, C. K., King, R., Hillis, R., Tingay, M., and Backe, G.: Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review, Earth-Sci. Rev., 104, 41–91, https://doi.org/10.1016/j.earscirev.2010.09.010, 2011.
Morón, S., Cawood, P. A., Haines, P. W., Gallagher, S. J., Zahirovic, S., Lewis, C. J., and Moresi, L.: Long-lived transcontinental sediment transport pathways of East Gondwana, Geology, 47, 513–516, https://doi.org/10.1130/g45915.1, 2019.
Muhs, D. R., Simmons, K. R., Schumann, R. R., Schweig, E. S., and Rowe, M. P.: Testing glacial isostatic adjustment models of last-interglacial sea level history in the Bahamas and Bermuda, Quat. Sci. Rev., 233, 106212, https://doi.org/10.1016/j.quascirev.2020.106212, 2020.
Nakada, M. and Lambeck, K.: Late Pleistocene and Holocene sea-level change in the Australian region and mantle rheology, Geophys. J. Int., 96, 497–517, https://doi.org/10.1111/j.1365-246X.1989.tb06010.x, 1989.
Nyberg, B., Helland-Hansen, W., Gawthorpe, R. L., Sandbakken, P., Eide, C. H., Sømme, T., Hadler-Jacobsen, F., and Leiknes, S.: Revisiting morphological relationships of modern source-to-sink segments as a first-order approach to scale ancient sedimentary systems, Sediment. Geol., 373, 111–133, https://doi.org/10.1016/j.sedgeo.2018.06.007, 2018.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) Model and GRACE, Annu. Rev. Earth Pl. Sc., 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Polanco, S.: saraemp/egusphere-2023-53: published model (v1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.10553850, 2024.
Posarnentier, H. W. and Allen, G. P.: Siliciclastic Sequence Stratigraphy – Concepts and Applications, SEPM Society for Sedimentary Geology, https://doi.org/10.2110/csp.99.07, ISBN 10 1565760700, 1999.
Potter, E.-K. and Lambeck, K.: Reconciliation of sea-level observations in the Western North Atlantic during the last glacial cycle, Earth Planet. Sc. Lett., 217, 171–181, https://doi.org/10.1016/S0012-821X(03)00587-9, 2004.
Reynolds, D. J., Steckler, M. S., and Coakley, B. J.: The role of the sediment load in sequence stratigraphy: The influence of flexural isostasy and compaction, J. Geophys. Res.-Sol. Ea., 96, 6931–6949, https://doi.org/10.1029/90JB01914, 1991.
Sadler, P.: The influence of hiatuses on sediment accumulation rates, GeoResearch Forum, 15–40, 1999.
Sadler, P. M.: Sediment Accumulation Rates and the Completeness of Stratigraphic Sections, J. Geol., 89, 569–584, 1981.
Salles, T. and Hardiman, L.: Badlands: An open-source, flexible and parallel framework to study landscape dynamics, Comput. Geosci., 91, 77–89, https://doi.org/10.1016/j.cageo.2016.03.011, 2016.
Salles, T., Ding, X., and Brocard, G.: pyBadlands: A framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time, PLOS ONE, 13, e0195557, https://doi.org/10.1371/journal.pone.0195557, 2018.
Schwab, W. C., Gayes, P. T., Morton, R. A., Driscoll, N. W., Baldwin, W. E., Barnhardt, W. A., Denny, J. F., Harris, M. S., Katuna, M. P., Putney, T. R., Voulgaris, G., Warner, J. C., and Wright, E. E.: Coastal change along the shore of northeastern South Carolina the South Carolina coastal erosion study, edited by: Barnhardt, W. A. and Schwab, W. C., U.S. Dept. of the Interior, U.S. Geological Survey, Reston, Va., https://doi.org/10.3133/cir1339, 2009.
Shen, Z., Dawers, N. H., Törnqvist, T. E., Gasparini, N. M., Hijma, M. P., and Mauz, B.: Mechanisms of late Quaternary fault throw-rate variability along the north central Gulf of Mexico coast: implications for coastal subsidence, Basin Res., 29, 557–570, https://doi.org/10.1111/bre.12184, 2017.
Sømme, T. O., Helland-Hansen, W., Martinsen, O. J., and Thurmond, J. B.: Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems, Basin Res., 21, 361–387, https://doi.org/10.1111/j.1365-2117.2009.00397.x, 2009.
Sømme, T. O., Huwe, S. I., Martinsen, O. J., Sandbakken, P. T., Skogseid, J., and Valore, L. A.: Stratigraphic expression of the Paleocene-Eocene Thermal Maximum climate event during long-lived transient uplift – An example from a shallow to deep-marine clastic system in the Norwegian Sea, Front. Earth Sci., 11, 1082203, https://doi.org/10.3389/feart.2023.1082203, 2023.
Steckler, M. S., Nooner, S. L., Akhter, S. H., Chowdhury, S. K., Bettadpur, S., Seeber, L., and Kogan, M. G.: Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) data, J. Geophys. Res.-Sol. Ea., 115, B08407, https://doi.org/10.1029/2009JB007018, 2010.
Steckler, M. S., Oryan, B., Wilson, C. A., Grall, C., Nooner, S. L., Mondal, D. R., Akhter, S. H., DeWolf, S., and Goodbred, S. L.: Synthesis of the distribution of subsidence of the lower Ganges-Brahmaputra Delta, Bangladesh, Earth-Sci. Rev., 224, 103887, https://doi.org/10.1016/j.earscirev.2021.103887, 2022.
Sweet, M. L. and Blum, M. D.: Connections Between Fluvial To Shallow Marine Environments and Submarine Canyons: Implications For Sediment Transfer To Deep Water, J. Sediment. Res., 86, 1147–1162, https://doi.org/10.2110/jsr.2016.64, 2016.
Tesauro, M., Kaban, M. K., and Cloetingh, S. A. P. L.: Global strength and elastic thickness of the lithosphere, Global Planet. Change, 90, 51–57, https://doi.org/10.1016/j.gloplacha.2011.12.003, 2012.
Thom, B. G. and Chappell, J.: Holocene Sea Level Change: An Interpretation, Philos. T. Roy. Soc. A, 291, 187–194, 1978.
Törnqvist, T. E., Wallace, D. J., Storms, J. E. A., Wallinga, J., van Dam, R. L., Blaauw, M., Derksen, M. S., Klerks, C. J. W., Meijneken, C., and Snijders, E. M. A.: Mississippi Delta subsidence primarily caused by compaction of Holocene strata, Nat. Geosci., 1, 173–176, https://doi.org/10.1038/ngeo129, 2008.
Wahbi, A. M., Blum, M. D., and Nazworth Doerger, C.: Early Cretaceous continental-scale sediment routing, the McMurray Formation, Western Canada Sedimentary Basin, Alberta, Canada, GSA Bull., 135, 2088–2106, https://doi.org/10.1130/b36412.1, 2022.
Wang, H., Gurnis, M., and Skogseid, J.: Rapid Cenozoic Subsidence in the Gulf of Mexico Resulting From Hess Rise Conjugate Subduction, Geophys. Res. Lett., 44, 10930–10938, https://doi.org/10.1002/2017GL074959, 2017.
Wang, H., Gurnis, M., and Skogseid, J.: Continent-wide drainage reorganization in North America driven by mantle flow, Earth Planet. Sc. Lett., 530, 115910, https://doi.org/10.1016/j.epsl.2019.115910, 2020.
Watts, A. B.: Lithospheric flexure due to prograding sediment loads: implications for the origin of offlap/onlap patterns in sedimentary basins, Basin Res., 2, 133–144, https://doi.org/10.1111/j.1365-2117.1989.tb00031.x, 1989.
Watts, A. B.: Isostasy and Flexure of the Lithosphere, New York, ISBN 0 521 62272 7, 2001.
Watts, A. B., Rodger, M., Peirce, C., Greenroyd, C. J., and Hobbs, R. W.: Seismic structure, gravity anomalies, and flexure of the Amazon continental margin, NE Brazil, J. Geophys. Res.-Sol. Ea., 114, B07103, https://doi.org/10.1029/2008JB006259, 2009.
Whitehouse, P. L.: Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions, Earth Surf. Dynam., 6, 401–429, https://doi.org/10.5194/esurf-6-401-2018, 2018.
Wickert, A. D.: Open-source modular solutions for flexural isostasy: gFlex v1.0, Geosci. Model Dev., 9, 997–1017, https://doi.org/10.5194/gmd-9-997-2016, 2016.
Wolstencroft, M., Shen, Z., Törnqvist, T. E., Milne, G. A., and Kulp, M.: Understanding subsidence in the Mississippi Delta region due to sediment, ice, and ocean loading: Insights from geophysical modeling, J. Geophys. Res.-Sol. Ea., 119, 3838–3856, https://doi.org/10.1002/2013JB010928, 2014.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Short summary
Two-thirds of the world's most populated cities are situated close to deltas. We use computer simulations to understand how deltas sink or rise in response to climate-driven sea level changes that operate from thousands to millions of years. Our research shows that because of the interaction between the outer layers of the Earth, sediment transport, and sea level changes deltas develop a self-regulated mechanism that modifies the space they need to gain or lose land.
Two-thirds of the world's most populated cities are situated close to deltas. We use computer...