Articles | Volume 9, issue 5
https://doi.org/10.5194/esurf-9-1239-2021
https://doi.org/10.5194/esurf-9-1239-2021
Short communication
 | 
15 Sep 2021
Short communication |  | 15 Sep 2021

Short communication: Analytical models for 2D landscape evolution

Philippe Steer

Related authors

Post-glacial reshaping of Alpine topography induced by landsliding
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088,https://doi.org/10.5194/egusphere-2025-2088, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Deformation and exhumation in thick continental crusts induced by valley incision of elevated plateaux
Thomas Geffroy, Philippe Yamato, Philippe Steer, Benjamin Guillaume, and Thibault Duretz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1962,https://doi.org/10.5194/egusphere-2025-1962, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
New experiments to probe the role of fractures in bedrock on river erosion rate and processes
Marion Fournereau, Laure Guerit, Philippe Steer, Jean-Jacques Kermarrec, Paul Leroy, Christophe Lanos, Hélène Hivert, Claire Astrié, and Dimitri Lague
EGUsphere, https://doi.org/10.5194/egusphere-2025-1541,https://doi.org/10.5194/egusphere-2025-1541, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024,https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022,https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
A fractal framework for channel–hillslope coupling
Benjamin Kargère, José Constantine, Tristram Hales, Stuart Grieve, and Stewart Johnson
Earth Surf. Dynam., 13, 403–415, https://doi.org/10.5194/esurf-13-403-2025,https://doi.org/10.5194/esurf-13-403-2025, 2025
Short summary
Hillslope diffusion and channel steepness in landscape evolution models
David G. Litwin, Luca C. Malatesta, and Leonard S. Sklar
Earth Surf. Dynam., 13, 277–293, https://doi.org/10.5194/esurf-13-277-2025,https://doi.org/10.5194/esurf-13-277-2025, 2025
Short summary
Modeling memory in gravel-bed rivers: A flow history-dependent relation for evolving thresholds of motion
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3250,https://doi.org/10.5194/egusphere-2024-3250, 2024
Short summary
Channel concavity controls planform complexity of branching drainage networks
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024,https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary
Knickpoints and fixed points: the evolution of fluvial morphology under the combined effect of fault uplift and dam obstruction on a soft bedrock river
Hung-En Chen, Yen-Yu Chiu, Chih-Yuan Cheng, and Su-Chin Chen
Earth Surf. Dynam., 12, 1329–1346, https://doi.org/10.5194/esurf-12-1329-2024,https://doi.org/10.5194/esurf-12-1329-2024, 2024
Short summary

Cited articles

Barnes, R., Lehman, C., and Mulla, D.: Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation models, Comput. Geosci., 62, 117–127, 2014. 
Braun, J. and Sambridge, M.: Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization, Basin Res., 9, 27–52, 1997. 
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, 180, 170–179, 2013. 
Braun, J., Simon-Labric, T., Murray, K. E., and Reiners, P. W.: Topographic relief driven by variations in surface rock density, Nat. Geosci., 7, 534–540, 2014. 
Campforts, B. and Govers, G.: Keeping the edge: A numerical method that avoids knickpoint smearing when solving the stream power law, J. Geophys. Res.-Earth, 120, 1189–1205, 2015. 
Download
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Share