Articles | Volume 9, issue 3
https://doi.org/10.5194/esurf-9-463-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-463-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Implications of the ongoing rock uplift in NW Himalayan interiors
Earth Science Discipline, IIT Gandhinagar, Gandhinagar-382355, India
Rasmus C. Thiede
Institute of Geosciences, Christian Albrechts University of Kiel, 24118 Kiel, Germany
Arindam Biswas
Department of Applied Geology, IIT-ISM Dhanbad, Jharkhand-826004, India
Naveen Chauhan
Atomic Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad, India
Pritha Chakravarti
Earth Science Discipline, IIT Gandhinagar, Gandhinagar-382355, India
Vikrant Jain
Earth Science Discipline, IIT Gandhinagar, Gandhinagar-382355, India
Related authors
No articles found.
Arindam Biswas, Svenja Riedesel, Louise Karman-Besson, Max Hellers, Anne Guyez, Stéphane Bonnet, and Tony Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4809, https://doi.org/10.5194/egusphere-2025-4809, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
We evaluate luminescence signal resetting in single-grain K-feldspar from modern fluvial analogues in Chile. Our results show that resetting efficiency is inversely related to the size of the natural luminescence signal. Additionally, high scatter in remaining natural signals at deposition challenges their use while dating old sedimentary deposits. We assess three correction methods for age calculation and explore various aspects relevant to luminescence-based sediment tracing applications.
Cited articles
Bagnold, R. A.: An approach to the sediment transport problem from general
physics, US government printing office, Washington, USA, https://doi.org/10.3133/pp422I, 1966.
Bailey, R. M. and Arnold, L. J.: Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose, Quaternary Sci. Rev., 25, 2475–2502, 2006.
Bhatia, T. R., and Bhatia, S. K.: Sedimentology of the slate belt of
Ramban-Banihal area, Kashmir Himalaya, Himal. Geol., 3, 116–134, 1973.
Bollinger, L., Henry, P., and Avouac, J. P.: Mountain building in the Nepal
Himalaya: Thermal and kinematic model, Earth Planet Sci. Lett., 244, 58–71, https://doi.org/10.1016/j.epsl.2006.01.045, 2006.
Bookhagen, B., and Burbank, D. W.: Topography, relief, and TRMM-derived
rainfall variations along the Himalaya, Geophys. Res. Lett., 33, L08405, https://doi.org/10.1029/2006GL026037, 2006.
Bookhagen, B., Thiede, R. C., and Strecker, M. R.: Late Quaternary
intensified monsoon phases control landscape evolution in the northwest
Himalaya, Geology, 33, 149–152, https://doi.org/10.1130/G20982.1,
2005.
Burgess, W. P., Yin, A., Dubey, C. S., Shen, Z. K., and Kelty, T. K.:
Holocene shortening across the Main Frontal Thrust zone in the eastern
Himalaya, Earth Planet Sci. Lett., 357, 152–167, https://doi.org/10.1016/j.epsl.2012.09.040, 2012.
Caldwell, W. B., Klemperer, S. L., Lawrence, J. F., and Rai, S. S.:
Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with
receiver function CCP stacking, Earth Planet Sci. Lett., 367, 15–27, https://doi.org/10.1016/j.epsl.2013.02.009, 2013.
Chauhan, N. and Singhvi, A. K.: Distribution in SAR palaeodoses due to spatial heterogeniety of natural beta dose, Geochronometria, 38, 190–198, 2011.
Cunningham, A. C. and Wallinga, J.: Realizing the potential of fluvial archives using robust OSL chronologies, Quat. Geochronol., 12, 98–106, 2012.
DeCelles, P. G., Robinson, D. M., Quade, J., Ojha, T. P., Garzione, C. N.,
Copeland, P., and Upreti, B. N.: Stratigraphy, structure, and tectonic evolution of the
Himalayan fold-thrust belt in western Nepal, Tectonics, 20, 487–509, https://doi.org/10.1029/2000TC001226, 2001.
Deeken, A., Thiede, R. C., Sobel, E. R., Hourigan, J. K., and Strecker, M.
R.: Exhumational variability within the Himalaya of northwest India. Earth
Planet Sci. Lett., 305, 103–114, https://doi.org/10.1016/j.epsl.2011.02.045, 2011.
Dey, S., Thiede, R. C., Schildgen, T. F., Wittmann, H., Bookhagen, B.,
Scherler, D., and Strecker, M. R.: Holocene internal shortening within the
northwest Sub-Himalaya: Out-of-sequence faulting of the Jwalamukhi Thrust,
India, Tectonics, 35, 2677–2697,
https://doi.org/10.1002/2015TC004002, 2016a.
Dey, S., Thiede, R. C., Schildgen, T. F., Wittmann, H., Bookhagen, B.,
Scherler, D., Jain, V., and Strecker, M. R.: Climate-driven sediment
aggradation and incision since the late Pleistocene in the NW Himalaya, India, Earth Planetary Sci. Lett., 449, 321–331, https://doi.org/10.1016/j.epsl.2016.05.050, 2016b.
DiPietro, J. A. and Pogue, K. R.: Tectonostratigraphic subdivisions of the
Himalaya: A view from the west, Tectonics, 23, TC5001, https://doi.org/10.1029/2003TC001554, 2004.
Dodson, M. H.: Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petr., 40, 259–274, https://doi.org/10.1007/BF00373790, 1973.
Durcan, J. A., King, G. E., and Duller, G. A.: DRAC: Dose Rate and Age Calculator for trapped charge dating, Quat. Geochronol., 28, 54–61, 2015.
Elliott, J. R., Jolivet, R., González, P. J., Avouac, J. P.,
Hollingsworth, J., Searle, M. P., and
Stevens, V. L.: Himalayan megathrust geometry and relation to topography
revealed by
the Gorkha earthquake, Nat. Geosci., 9, 174–180,
https://doi.org/10.1038/ngeo2623, 2016.
Eugster, P., Scherler, D., Thiede, R. C., Codilean, A. T., and Strecker, M.
R.: Rapid Last Glacial Maximum deglaciation in the Indian Himalaya coeval
with midlatitude glaciers: New insights from 10Be-dating of ice-polished
bedrock surfaces in the Chandra Valley, NW
Himalaya, Geophys. Res. Lett., 43, 1589–1597,
https://doi.org/10.1002/2015GL066077, 2016.
Finnegan, N. J., Roe, G., Montgomery, D. R., and Hallet, B.: Controls on the
channel width of rivers: Implications for modelling fluvial incision of
bedrock, Geology, 33, 229–232, https://doi.org/10.1130/G21171.1,
2005.
Flint, J. J.: Stream gradient as a function of order, magnitude, and
discharge, Water
Resour. Res., 10, 969–973,
https://doi.org/10.1029/WR010i005p00969, 1974.
Forte, A. M. and Whipple, K. X.: Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox, Earth Surf. Dynam., 7, 87–95, https://doi.org/10.5194/esurf-7-87-2019, 2019.
Frank, W., Grasemann, B., Guntli, P., and Miller, C.: Geological
map of the
Kishtwar-Chamba-Kulu region (NW Himalayas, India), Jahrbuch der Geologischen
Bundesanstalt, 138, 299–308, 1995.
Fuchs, G.: Contributions to the geology of the North-Western Himalayas,
Geologische Bundesanstalt, Vienna, Austria, 1975.
Fuchs, G.: Outline of the geology of the Himalaya, Mitt. osterr. geol. Ges,
74, 101–127, 1981.
Gavillot, Y., Meigs, A. J., Sousa, F. J., Stockli, D., Yule, D., and Malik,
M.: Late Cenozoic Foreland-to-Hinterland Low-Temperature Exhumation History
of the Kashmir
Himalaya, Tectonics, 37, 3041–3068,
https://doi.org/10.1029/2017TC004668, 2018.
Gavillot, Y., Meigs, A., Yule, Y., Heermance, R., Rittenour, T., Madugo, C.,
and Malik, M.: Shortening rate and Holocene surface rupture on the Riasi
fault system in the Kashmir
Himalaya: Active thrusting within the Northwest Himalayan orogenic wedge, Geol. Soc. Am. Bull., 128, 1070–1094,
https://doi.org/10.1130/B31281.1, 2016.
Herman, F., Copeland, P., Avouac, J.P., Bollinger, L., Mahéo, G., Le
Fort, P., Rai, S., Foster, D., Pêcher, A., Stüwe, K., and Henry, P.:
Exhumation, crustal deformation, and thermal
structure of the Nepal Himalaya derived from the inversion of
thermochronological and
thermobarometric data and modeling of the topography, J. Geophy. Res.-Sol. Ea., 115, B06407, https://doi.org/10.1029/2008JB006126, 2010.
Huntley, D. J. and Lamothe, M.: Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating, Can. J. Earth Sci., 38, 1093–1106, 2001.
Jain, A. K., Kumar, D., Singh, S., Kumar, A., and Lal, N.: Timing, quantification and tectonic modelling of Pliocene–Quaternary movements in the NW Himalaya: evidence from fission track dating, Earth Planet. Sci. Lett., 179, 437–451, 2000.
Kaushal, R. K., Singh, V., Mukul, M., and Jain, V.: Identification of
deformation
variability and active structures using geomorphic markers in the Nahan
salient, NW Himalaya, India. Quat. Int., 462, 194–210,
https://doi.org/10.1016/j.quaint.2017.08.015, 2017.
Kirby, E. and Whipple, K. X.,: Expression of active tectonics in erosional landscapes, J. Struct Geol., 44, 54–75, 2012.
Kothyari, G. C. and Juyal, N.: Implications of fossil valleys and associated epigenetic gorges in parts of Central Himalaya, Curr. Sci., 383–388, 2013.
Kumar, A., Lal, N., Jain, A. K., and Sorkhabi, R. B.: Late
Cenozoic–Quaternary thermo-tectonic history of Higher Himalayan Crystalline (HHC) in
Kishtwar–Padar–Zanskar region,
NW Himalaya: Evidence from fission-track ages, J. Geol. Soc. India,
45, 375–391, 1995.
Lavé, J. and Avouac, J. P.: Active folding of fluvial terraces across
the Siwaliks Hills,
Himalayas of central Nepal., J. Geophys. Res.-Sol. Ea., 105,
5735–5770, https://doi.org/10.1029/1999JB900292, 2000.
Mahesh, P., Gupta, S., Saikia, U., and Rai, S. S.: Seismotectonics and
crustal stress field in the Kumaon-Garhwal Himalaya, Tectonophysics,
655, 124–138, https://doi.org/10.1016/j.tecto.2015.05.016,
2015.
Malik, J. N. and Mohanty, C.: Active tectonic influence on the evolution of
drainage and landscape: geomorphic signatures from frontal and hinterland
areas along the Northwestern Himalaya, India, J. Asian Earth Sci., 29, 604–618,
https://doi.org/10.1016/j.jseaes.2006.03.010, 2007.
Mitra, G., Bhattacharyya, K., and Mukul, M.: The lesser Himalayan duplex in
Sikkim:
implications for variations in Himalayan shortening, J. Geol. Soc. India, 75, 289–301,
https://doi.org/10.1007/s12594-010-0016-x, 2010.
Mukherjee S.: A review on out-of-sequence deformation in the Himalaya, in: Tectonics of the
Himalaya, edited by: Mukherjee, S., Carosi, R., van der Beek, P., Mukherjee, B. K., and Robinson, D., Geol. Soc. Lond. Spec. Publ., 412, 67–109,
https://doi.org/10.1144/SP412.13, 2015.
Nábělek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B.,
Jiang, M., Su, H., Chen, J., and Huang, B. S.: Underplating in the
Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment, Science,
325, 1371–1374, https://doi.org/10.1126/science.1167719,
2009.
Nennewitz, M., Thiede, R. C., and Bookhagen, B.: Fault activity, tectonic
segmentation,
and deformation pattern of the western Himalaya on Ma timescales inferred
from landscape
morphology, Lithosphere, 10, 632–640,
https://doi.org/10.1130/L681.1, 2018.
Ni, J. and M. Barazangi: Seismotectonics of the Himalayan collision
zone: Geometry of the underthrusting Indian plate beneath the Himalaya, J.
Geophys. Res., 89, 1147–1163,
https://doi.org/10.1029/JB089iB02p01147, 1984.
Niedzielski, T., Migoń, P., and Placek, A.,: A minimum sample size required from Schmidt hammer measurements, Earth Surf. Proc. Land., 34, 1713–1725, 2009.
Norin, E.: The relief chronology of the Chenab valley, Geogr. Ann., 8, 284–300, 1926.
Olley, J., Caitcheon, G., and Murray, A.,: The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: implications for dating young sediments, Quaternary Sci. Rev., 17, 1033–1040, 1998.
Owen, L. A., Finkel, R. C., and Caffee, M. W.,: A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum, Quaternary Sci. Rev., 21, 147–157, 2002.
Ouimet, W. B., Whipple, K. X., Crosby, B. T., Johnson, J. P., and Schildgen, T. F.: Epigenetic gorges in fluvial landscapes, Earth Surf. Processes, 33, 1993–2009, https://doi.org/10.1002/esp.1650, 2008.
Pant, R. K., Juyal, N., Basavaiah, N., and Singhvi, A. K.: Late Quaternary glaciation and seismicity in the Higher Central Himalaya: evidence from Shalang basin (Goriganga), Uttaranchal, Curr. Sci., 1500–1505, 2006.
Powers, P. M., Lillie, R. J., and Yeats, R. S.: Structure and shortening of
the Kangra and
Dehra Dun reentrants, sub-Himalaya, India. Geol. Soc. Am. Bull., 110,
1010–1027,
https://doi.org/10.1130/0016-7606(1998)110<1010:SASOTK>2.3.CO;2, 1998.
Preusser, F.: IRSL dating of K-rich feldspars using the SAR protocol: comparison with independent age control, Ancient TL, 21, 17–23, 2003.
Robert, X., Van Der Beek, P., Braun, J., Perry, C., Dubille, M., and
Mugnier, J. L.:
Assessing Quaternary reactivation of the Main Central thrust zone (central
Nepal Himalaya):
New thermochronologic data and numerical modeling, Geology, 37, 731–734,
https://doi.org/10.1130/G25736A.1, 2009.
Roberts, H. M.: Assessing the effectiveness of the double-SAR protocol in isolating a luminescence signal dominated by quartz, Radiat. Meas., 42, 1627–1636, 2007.
Robinson, D. M. and Martin, A. J.: Reconstructing the Greater Indian
margin: A balanced cross section in central Nepal focusing on the Lesser
Himalayan duplex, Tectonics, 33, 2143–2168,
https://doi.org/10.1002/2014TC003564, 2014.
Royden, L. and Taylor Perron, J.: Solutions of the stream power equation
and application
to the evolution of river longitudinal profiles, J. Geophys. Res.-Earth, 118, 497–518, https://doi.org/10.1002/jgrf.20031, 2013.
Google earth v. 9.135.0.3., Kishtwar, India,
33∘13′1′′ N, 76∘07′54′′E, Eye alt, 1950 m,
DigitalGlobe 2019, available at: http://www.earth.google.com, last access: 27 January 2020.
Scherler, D., Bookhagen, B., Wulf, H., Preusser, F., and Strecker, M. R.:
Increased late Pleistocene erosion rates during fluvial aggradation in the
Garhwal Himalaya, northern
India, Earth Planet Sci. Lett., 428, 255–266, https://doi.org/10.1016/j.epsl.2015.06.034, 2015.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Searle, M. P., Stephenson, B., Walker, J., and Walker, C.: Restoration of
the Western
Himalaya: implications for metamorphic protoliths, thrust and normal
faulting, and channel flow models, Episodes, 30, 242–257,
https://doi.org/10.18814/epiiugs/2007/v30i4/001, 2007.
Seeber, L. and Gornitz, V.: River profiles along the Himalayan arc as
indicators of active tectonics, Tectonophysics, 92, 335–367,
https://doi.org/10.1016/0040-1951(83)90201-9, 1983.
Sharma, S., Bartarya, S. K., and Marh, B. S.: The role of pre-existing topography in the evolution of post-glacial fluvial landforms in the middle Satluj valley, north-western Himalaya, India, Quatern, Int., 425, 399–415, https://doi.org/10.1016/j.quaint.2016.08.015, 2016.
Singhvi, A. K., Williams, M. A. J., Rajaguru, S. N., Misra, V. N., Chawla, S., Stokes, S., Chauhan, N., Francis, T., Ganjoo, R. K., and Humphreys, G. S.: A ∼200 ka record of climatic change and dune activity in the Thar Desert, India, Quaternary Sci. Rev., 29, 3095–3105, 2010.
Steck, A.: Geology of the NW Indian Himalaya, Eclogae Geol. Helv., 96, 147–196, 2003.
Stephenson, B. J., Waters, D. J., and Searle, M. P.: Inverted metamorphism
and the Main
Central Thrust: field relations and thermobarometric constraints from the
Kishtwar Window, NW Indian Himalaya, J. of Metamorph. Geol., 18, 571–590,
https://doi.org/10.1046/j.1525-1314.2000.00277.x, 2000.
Stübner, K., Grujic, D., Dunkl, I., Thiede, R., and Eugster, P.:
Pliocene episodic
exhumation and the significance of the Munsiari thrust in the northwestern
Himalaya, Earth Planet Sci. Lett., 481, 273–283,
https://doi.org/10.1016/j.epsl.2017.10.036, 2018.
Thakur, V. C. (Ed.): Geology of western Himalaya, Pergamon Press, Oxford, United Kingdom, 19, 1–355, 1992.
Thakur, V. C., Joshi, M., Sahoo, D., Suresh, N., Jayangondapermal, R., and
Singh, A.: Partitioning of convergence in Northwest Sub-Himalaya: estimation
of late Quaternary uplift and convergence rates across the Kangra reentrant,
North India. Int. J. Earth Sci., 103, 1037–1056,
https://doi.org/10.1007/s00531-014-1016-7, 2014.
Thiede, R., Robert, X., Stübner, K., Dey, S., and Faruhn, J.: Sustained
out-of-sequence
shortening along a tectonically active segment of the Main Boundary thrust:
The Dhauladhar
Range in the northwestern Himalaya, Lithosphere, 9, 715–725,
https://doi.org/10.1130/L630.1, 2017.
Thiede, R. C., Bookhagen, B., Arrowsmith, J. R., Sobel, E. R., and Strecker,
M. R.: Climatic control on rapid exhumation along the southern Himalayan, Front. Earth Planet
Sci. Lett., 222, 791–806,
https://doi.org/10.1016/j.epsl.2004.03.015, 2004.
Thiede, R. C., Ehlers, T. A., Bookhagen, B., and Strecker, M. R.: Erosional variability along the northwest Himalaya, J. Geophys. Res.-Earth, 114, F01015, https://doi.org/10.1029/2008JF001010, 2009.
Turowski, J. M., Lague, D., and Hovius, N.: Response of bedrock channel
width to
tectonic forcing: Insights from a numerical model, theoretical
considerations, and comparison
with field data, J. Geophys. Res. Earth, 114, https://doi.org/10.1029/2008JF001133,
2009.
ul Haq, A., Pandita, S. K., Singh, Y., Bhat, G. M., Pandey, S. J., Singh, A., Verma, M., and Bansal, B. K.: Evidence of Active Tectonic Deformation in Kishtwar Area, Jammu and Kashmir, Northwest Himalaya, India, J. Geol. Soc. India, 93, 331–342, https://doi.org/10.1007/s12594-019-1181-1, 2019.
van der Beek, P., Litty, C., Baudin, M., Mercier, J., Robert, X., and Hardwick, E.: Contrasting tectonically driven exhumation and incision patterns, western versus central Nepal Himalaya, Geology, 44, 327–330, 2016.
Vannay, J. C., Grasemann, B., Rahn, M., Frank, W., Carter, A., Baudraz, V., and Cosca, M.: Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: Evidence for tectonic extrusion coupled to fluvial erosion, Tectonics, 23, TC1014, https://doi.org/10.1029/2002TC001429, 2004.
Vassallo, R., Mugnier, J. L., Vignon, V., Malik, M. A., Jayangondaperumal,
R., Srivastava, P., and Carcaillet, J.: Distribution of the late-Quaternary
deformation in northwestern
Himalaya, Earth Planet Sci. Lett., 411, 241–252,
https://doi.org/10.1016/j.epsl.2014.11.030, 2015.
Wadia, D. N.: The Cambrian-Trias sequence of north-western Kashmir (parts of
Muzaffarabad and Baramula districts), Records of the Geological Survey of
India, 68, 121–176, 1934.
Webb, A. A. G., Yin, A., Harrison, T. M., Célérier, J., Gehrels, G.
E., Manning, C. E., and Grove, M.: Cenozoic tectonic history of the Himachal
Himalaya (northwestern India) and its constraints on the formation mechanism
of the Himalayan orogen, Geosphere, 7, 1013–1061,
https://doi.org/10.1130/GES00627.1, 2011.
Wesnousky, S. G., Kumar, S., Mohindra, R., and Thakur, V. C.: Uplift and
convergence
along the Himalayan Frontal Thrust of India, Tectonics, 18, 967–976,
https://doi.org/10.1029/1999TC900026, 1999.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river
incision model:
Implications for height limits of mountain ranges, landscape response
timescales, and research needs, J. Geophys. Res.-Sol. Ea., 104,
17661–17674, https://doi.org/10.1029/1999JB900120, 1999.
Whipple, K. X., Shirzaei, M., Hodges, K. V., and Arrowsmith, J. R.: Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake, Nat. Geosci., 9, 711–716, https://doi.org/10.1038/ngeo2797, 2016.
Wobus, C. W., Hodges, K. V., and Whipple, K. X.: Has focused denudation
sustained
active thrusting at the Himalayan topographic front?, Geology, 31, 861–864,
https://doi.org/10.1130/G19730.1, 2003.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou,
K., Crosby, B.,
Sheehan, D., and Willett, S. D.: Tectonics from topography: Procedures,
promise, and
pitfalls, Geol. Soc. Am. Spec. Pap., 398, 55–74,
https://doi.org/10.1130/2006.2398(04), 2006.
Yadav, R. K., Gahalaut, V. K., Bansal, A. K., Sati, S., Catherine, J.,
Gautam, P., Kumar, K., and Rana, N.: Strong seismic coupling underneath
Garhwal–Kumaun region, NW Himalaya,
India, Earth Planet Sci. Lett., 506, 8–14,
https://doi.org/10.1016/j.epsl.2018.10.023, 2019.
Yin, A. and Harrison, T. M.: Geologic evolution of the Himalayan-Tibetan
orogen, Annu.
Rev. Earth Planet. Sci., 28, 211–280,
https://doi.org/10.1146/annurev.earth.28.1.211, 2000.
Short summary
Ongoing deformation of the Himalaya is not constrained to its southern extremity. With morphometric analysis using a high-resolution digital elevation model, satellite image analysis, luminescence chronology of fluvial terraces and field observations, we identify a zone of rapid rock uplift in the interior of the Kashmir Himalaya. Our results suggest active tectonic and structural control on the growth of topography in the Himalayan interiors over multi-millennial timescales.
Ongoing deformation of the Himalaya is not constrained to its southern extremity. With...