Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.928 IF 3.928
  • IF 5-year value: 3.864 IF 5-year
    3.864
  • CiteScore value: 6.2 CiteScore
    6.2
  • SNIP value: 1.469 SNIP 1.469
  • IPP value: 4.21 IPP 4.21
  • SJR value: 1.666 SJR 1.666
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 21 Scimago H
    index 21
  • h5-index value: 23 h5-index 23
Volume 4, issue 2
Earth Surf. Dynam., 4, 471–488, 2016
https://doi.org/10.5194/esurf-4-471-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Earth Surf. Dynam., 4, 471–488, 2016
https://doi.org/10.5194/esurf-4-471-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Jun 2016

Research article | 22 Jun 2016

The influence of Holocene vegetation changes on topography and erosion rates: a case study at Walnut Gulch Experimental Watershed, Arizona

Jon D. Pelletier et al.

Related authors

Controls on the hydraulic geometry of alluvial channels: bank stability to gravitational failure, the critical-flow hypothesis, and conservation of mass and energy
Jon D. Pelletier
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-44,https://doi.org/10.5194/esurf-2020-44, 2020
Preprint under review for ESurf
Short summary
Quantifying the controls on potential soil production rates: a case study of the San Gabriel Mountains, California
Jon D. Pelletier
Earth Surf. Dynam., 5, 479–492, https://doi.org/10.5194/esurf-5-479-2017,https://doi.org/10.5194/esurf-5-479-2017, 2017
Short summary
A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input
Christopher Shepard, Marcel G. Schaap, Jon D. Pelletier, and Craig Rasmussen
SOIL, 3, 67–82, https://doi.org/10.5194/soil-3-67-2017,https://doi.org/10.5194/soil-3-67-2017, 2017
Short summary
Constraining frequency–magnitude–area relationships for rainfall and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River basins, USA
Caitlin A. Orem and Jon D. Pelletier
Hydrol. Earth Syst. Sci., 20, 4483–4501, https://doi.org/10.5194/hess-20-4483-2016,https://doi.org/10.5194/hess-20-4483-2016, 2016
Short summary
Predicting the roughness length of turbulent flows over landscapes with multi-scale microtopography
Jon D. Pelletier and Jason P. Field
Earth Surf. Dynam., 4, 391–405, https://doi.org/10.5194/esurf-4-391-2016,https://doi.org/10.5194/esurf-4-391-2016, 2016
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
Transport-limited fluvial erosion – simple formulation and efficient numerical treatment
Stefan Hergarten
Earth Surf. Dynam., 8, 841–854, https://doi.org/10.5194/esurf-8-841-2020,https://doi.org/10.5194/esurf-8-841-2020, 2020
Short summary
Erosional response of granular material in landscape models
Riccardo Reitano, Claudio Faccenna, Francesca Funiciello, Fabio Corbi, and Sean D. Willett
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-35,https://doi.org/10.5194/esurf-2020-35, 2020
Revised manuscript accepted for ESurf
Short summary
Dimensional analysis of a landscape evolution model with incision threshold
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 8, 505–526, https://doi.org/10.5194/esurf-8-505-2020,https://doi.org/10.5194/esurf-8-505-2020, 2020
Short summary
Computing water flow through complex landscapes – Part 2: Finding hierarchies in depressions and morphological segmentations
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 8, 431–445, https://doi.org/10.5194/esurf-8-431-2020,https://doi.org/10.5194/esurf-8-431-2020, 2020
Short summary
Rivers as linear elements in landform evolution models
Stefan Hergarten
Earth Surf. Dynam., 8, 367–377, https://doi.org/10.5194/esurf-8-367-2020,https://doi.org/10.5194/esurf-8-367-2020, 2020
Short summary

Cited articles

Abrahams, A. D. and Ponczynski, J. J.: Drainage density in relation to precipitation intensity in the USA, J. Hydrol., 75, 383–388, https://doi.org/10.1016/0022-1694(84)90061-1, 1984.
Abrahams, A. D., Parsons, A. J., and Wainwright, J.: Effects of vegetation change on interrill erosion, Walnut Gulch, southern Arizona, Geomorphology, 13, 37–48, https://doi.org/10.1016/0169-555X(95)00027-3, 1995.
Anderson, R. S.: A 35 000 Year Vegetation and Climate History from Potato Lake, Mogollon Rim, Arizona, Quaternary Res., 40, 351–359, https://doi.org/10.1006/qres.1993.1088, 1993.
Antinao, J.-L. and McDonald, E.: A reduced relevance of vegetation change for alluvial aggradation in arid zones, Geology, 41, 11–14, https://doi.org/10.1130/G33623.1, 2013a.
Antinao, J.-L. and McDonald, E.: An enhanced role for the Tropical Pacific on the humid Pleistocene-Holocene transition in southwestern North America, Quat. Sci. Rev., 78, 319–341, https://doi.org/10.1016/j.quascirev.2013.03.019, 2013b.
Publications Copernicus
Download
Short summary
This paper documents that a shift from grassland to shrubland within the past few thousand years has caused erosion rates to increase more than 10-fold and drainage density to increase approximately 3-fold in areas of otherwise similar climate and geology at a study site in Arizona. We provide a mathematical model that predicts the observed drainage density under both grassland and shrubland conditions. In the model application we are able to tightly constrain every parameter.
This paper documents that a shift from grassland to shrubland within the past few thousand years...
Citation