Articles | Volume 4, issue 3
https://doi.org/10.5194/esurf-4-685-2016
https://doi.org/10.5194/esurf-4-685-2016
Research article
 | Highlight paper
 | 
29 Aug 2016
Research article | Highlight paper |  | 29 Aug 2016

Gravel threshold of motion: a state function of sediment transport disequilibrium?

Joel P. L. Johnson

Related authors

Modeling memory in gravel-bed rivers: A flow history-dependent relation for evolving thresholds of motion
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3250,https://doi.org/10.5194/egusphere-2024-3250, 2024
Short summary
Building a bimodal landscape: bedrock lithology and bed thickness controls on the morphology of Last Chance Canyon, New Mexico, USA
Sam Anderson, Nicole Gasparini, and Joel Johnson
Earth Surf. Dynam., 11, 995–1011, https://doi.org/10.5194/esurf-11-995-2023,https://doi.org/10.5194/esurf-11-995-2023, 2023
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
Channel concavity controls planform complexity of branching drainage networks
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024,https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary
Knickpoints and fixed points: the evolution of fluvial morphology under the combined effect of fault uplift and dam obstruction on a soft bedrock river
Hung-En Chen, Yen-Yu Chiu, Chih-Yuan Cheng, and Su-Chin Chen
Earth Surf. Dynam., 12, 1329–1346, https://doi.org/10.5194/esurf-12-1329-2024,https://doi.org/10.5194/esurf-12-1329-2024, 2024
Short summary
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024,https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short Communication: Numerically simulated time to steady state is not a reliable measure of landscape response time
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024,https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary

Cited articles

Ancey, C., Davison, A. C., Bohm, T., Jodeau, M., and Frey, P.: Entrainment and motion of coarse particles in a shallow water stream down a steep slope, J. Fluid Mech., 595, 83–114, https://doi.org/10.1017/s0022112007008774, 2008.
Buffington, J. M.: The legend of A. F. Shields, J. Hydraul. Eng.-ASCE, 125, 376–387, https://doi.org/10.1061/(asce)0733-9429(1999)125:4(376), 1999.
Buffington, J. M. and Montgomery, D. R.: A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers, Water Resour. Res., 33, 1993–2029, https://doi.org/10.1029/97wr03190, 1997.
Bunte, K., Abt, S. R., Swingle, K. W., Cenderelli, D. A., and Schneider, J. M.: Critical Shields values in coarse-bedded steep streams, Water Resour. Res., 49, 7427–7447, https://doi.org/10.1002/2012wr012672, 2013.
Buscombe, D. and Conley, D. C.: Effective shear stress of graded sediments, Water Resour. Res., 48, W05506, https://doi.org/10.1029/2010wr010341, 2012.
Download
Short summary
Accurately predicting gravel transport rates in mountain rivers is difficult because of feedbacks with channel morphology. River bed surfaces evolve during floods, influencing transport rates. I propose that the threshold of gravel motion is a state variable for channel reach evolution. I develop a new model to predict how transport thresholds evolve as a function of transport rate, and then use laboratory flume experiments to calibrate and validate the model.