Articles | Volume 9, issue 4
https://doi.org/10.5194/esurf-9-923-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-923-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Last-glacial-cycle glacier erosion potential in the Alps
Julien Seguinot
CORRESPONDING AUTHOR
Independent scholar, Anafi, Greece
Ian Delaney
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
Related authors
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Ian Delaney, Andrew J. Tedstone, Mauro A. Werder, and Daniel Farinotti
The Cryosphere, 19, 2779–2795, https://doi.org/10.5194/tc-19-2779-2025, https://doi.org/10.5194/tc-19-2779-2025, 2025
Short summary
Short summary
Sediment transport capacity depends on water velocity and channel width. In rivers, water discharge changes affect flow depth, width, and velocity. Yet, under glaciers, discharge variations alter velocity more than channel shape. Due to these differences, this study shows that sediment transport capacity under glaciers varies widely and peaks before water flow, creating a complex relationship. Understanding these dynamics helps interpret sediment discharge from glaciers in different climates.
Alan Robert Alexander Aitken, Ian Delaney, Guillaume Pirot, and Mauro A. Werder
The Cryosphere, 18, 4111–4136, https://doi.org/10.5194/tc-18-4111-2024, https://doi.org/10.5194/tc-18-4111-2024, 2024
Short summary
Short summary
Understanding how glaciers generate sediment and transport it to the ocean is important for understanding ocean ecosystems and developing knowledge of the past cryosphere from marine sediments. This paper presents a new way to simulate sediment transport in rivers below ice sheets and glaciers and quantify volumes and characteristics of sediment that can be used to reveal the hidden record of the subglacial environment for both past and present glacial conditions.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Ian Delaney, Leif Anderson, and Frédéric Herman
Earth Surf. Dynam., 11, 663–680, https://doi.org/10.5194/esurf-11-663-2023, https://doi.org/10.5194/esurf-11-663-2023, 2023
Short summary
Short summary
This paper presents a two-dimensional subglacial sediment transport model that evolves a sediment layer in response to subglacial sediment transport conditions. The model captures sediment transport in supply- and transport-limited regimes across a glacier's bed and considers both the creation and transport of sediment. Model outputs show how the spatial distribution of sediment and water below a glacier can impact the glacier's discharge of sediment and erosion of bedrock.
Flavien Beaud, Saif Aati, Ian Delaney, Surendra Adhikari, and Jean-Philippe Avouac
The Cryosphere, 16, 3123–3148, https://doi.org/10.5194/tc-16-3123-2022, https://doi.org/10.5194/tc-16-3123-2022, 2022
Short summary
Short summary
Understanding sliding at the bed of glaciers is essential to understand the future of sea-level rise and glacier-related hazards. Yet there is currently no universal law to describe this mechanism. We propose a universal glacier sliding law and a method to qualitatively constrain it. We use satellite remote sensing to create velocity maps over 6 years at Shisper Glacier, Pakistan, including its recent surge, and show that the observations corroborate the generalized theory.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Cited articles
Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of
the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 1: Boundary conditions and climatic forcing, The Cryosphere, 14, 599–632, https://doi.org/10.5194/tc-14-599-2020, 2020a. a
Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of
the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis, The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, 2020b. a
Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D. E.,
and Larson, G. J.: How glaciers entrain and transport basal sediment: physical constraints, Quaternary Sci. Rev., 16, 1017–1038,
https://doi.org/10.1016/S0277-3791(97)00034-6, 1997. a
Alley, R. B., Cuffey, K. M., and Zoet, L. K.: Glacial erosion: status and
outlook, Ann. Glaciol., 60, 1–13, https://doi.org/10.1017/aog.2019.38, 2019. a
Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers: response to steady debris deposition, The Cryosphere, 10, 1105–1124, https://doi.org/10.5194/tc-10-1105-2016, 2016. a
Anderson, R., Dühnforth, M., Colgan, W., and Anderson, L.: Far-flung
moraines: Exploring the feedback of glacial erosion on the evolution of
glacier length, Geomorphology, 179, 269–285, https://doi.org/10.1016/j.geomorph.2012.08.018, 2012. a, b
Barr, I., Ely, J., Spagnolo, M., Clark, C., Evans, I., Pellicer, X., Pellitero, R., and Rea, B.: Climate patterns during former periods of mountain glaciation in Britain and Ireland: Inferences from the cirque record, Palaeogeogr., Palaeocl., 485, 466–475, https://doi.org/10.1016/j.palaeo.2017.07.001, 2017. a
Barr, I., Ely, J., Spagnolo, M., Evans, I., and Tomkins, M.: The dynamics of
mountain erosion: cirque growth slows as landscapes age, Earth Surf. Proc. Land., 44, 2628–2637, https://doi.org/10.1002/esp.4688, 2019. a, b
Beaud, F., Flowers, G. E., and Pimentel, S.: Seasonal-scale abrasion and
quarrying patterns from a two-dimensional ice-flow model coupled to distributed and channelized subglacial drainage, Geomorphology, 219,
176–191, https://doi.org/10.1016/j.geomorph.2014.04.036, 2014. a
Beaud, F., Venditti, J., Flowers, G., and Koppes, M.: Excavation of subglacial bedrock channels by seasonal meltwater flow, Earth Surf. Proc. Land., 43, 1960–1972, https://doi.org/10.1002/esp.4367, 2018. a
Bendixen, M., Iversen, L. L., Bjørk, A. A., Elberling, B.,
Westergaard-Nielsen, A., Overeem, I., Barnhart, K. R., Khan, S. A., Abermann,
J., Langley, K., and Kroon, A.: Delta progradation in Greenland driven by increasing glacial mass loss, Nature, 550, 101–104, https://doi.org/10.1038/nature23873, 2017. a
Coutterand, S.: Etude géomorphologique des flux glaciaires dans les Alpes
nord-occidentales au Pléistocène récent: du maximum de la dernière glaciation aux premières étapes de la déglaciation, PhD thesis, Université de Savoie, Savoie, 2010. a
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup,
N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general
instability of past climate from a 250-kyr ice-core record, Nature, 364,
218–220, https://doi.org/10.1038/364218a0, 1993. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Delaney, I. and Adhikari, S.: Increased Subglacial Sediment Discharge in a Warming Climate: Consideration of Ice Dynamics, Glacial Erosion, and Fluvial Sediment Transport, Geophys. Res. Lett., 47, e2019GL085672, https://doi.org/10.1029/2019GL085672, 2020. a, b
Delaney, I., Werder, M. A., and Farinotti, D.: A numerical model for fluvial
transport of subglacial sediment, J. Geophys. Res.-Earth, 124, 2197–2223, https://doi.org/10.1029/2019jf005004, 2019. a
Egholm, D., Nielsen, S., Pedersen, V., and Lesemann, J.-E.: Glacial effects
limiting mountain height, Nature, 460, 884–887, https://doi.org/10.1038/nature08263,
2009. a
Egholm, D., Pedersen, V., Knudsen, M., and Larsen, N.: Coupling the flow of
ice, water, and sediment in a glacial landscape evolution model, Geomorphology, 141–142, 47–66, https://doi.org/10.1016/j.geomorph.2011.12.019, 2012a. a
Egholm, D., Pedersen, V., Knudsen, M., and Larsen, N.: On the importance of
higher order ice dynamics for glacial landscape evolution, Geomorphology, 141–142, 67–80, https://doi.org/10.1016/j.geomorph.2011.12.020, 2012b. a
Ehlers, J., Gibbard, P. L., and Hughes, P. D. (Eds.): vol. 15 of Dev. Quaternary Sci., Elsevier, Amsterdam, 2011. a
Fabel, D., Ballantyne, C. K., and Xu, S.: Trimlines, blockfields, mountain-top erratics and the vertical dimensions of the last British-Irish Ice Sheet in NW Scotland, Quaternary Sci. Rev., 55, 91–102,
https://doi.org/10.1016/j.quascirev.2012.09.002, 2012. a
Fernandez, R., Anderson, J., Wellner, J., Minzoni, R., Hallet, B., and Smith,
R. T.: Latitudinal variation in glacial erosion rates from Patagonia and the Antarctic Peninsula (46∘ S–65∘ S), B. Geol. Soc. Am., 128, 1000–1023, https://doi.org/10.1130/B31321.1, 2016. a
Fu, P., Heyman, J., Hättestrand, C., Stroeven, A. P., and Harbor, J. M.:
Glacial geomorphology of the Shaluli Shan area, southeastern Tibetan Plateau,
J. Maps, 8, 48–55, https://doi.org/10.1080/17445647.2012.668762, 2012. a
Fu, P., Harbor, J. M., Stroeven, A. P., Hättestrand, C., Heyman, J., and
Zhou, L.: Glacial geomorphology and paleoglaciation patterns in Shaluli Shan,
the southeastern Tibetan Plateau – Evidence for polythermal ice cap glaciation, Geomorphology, 182, 66–78, https://doi.org/10.1016/j.geomorph.2012.10.030, 2013. a
Ganti, V., von Hagke, C., Scherler, D., Lamb, M., Fischer, W., and Avouac,
J.-P.: Time scale bias in erosion rates of glaciated landscapes, Sci. Adv., 2, e1600204, https://doi.org/10.1126/sciadv.1600204, 2016. a
Hallet, B.: A theoretical model of glacial abrasion, J. Glaciol., 23, 39–50,
https://doi.org/10.3189/s0022143000029725, 1979. a, b, c
Hallet, B.: Glacial quarrying: a simple theoretical model, Ann. Glaciol., 22,
1–8, https://doi.org/10.3189/1996aog22-1-1-8, 1996. a
Harbor, J. M., Hallet, B., and Raymond, C. F.: A numerical model of landform
development by glacial erosion, Nature, 333, 347–349, https://doi.org/10.1038/333347a0, 1988. a
Harper, J. and Humphrey, N.: High altitude Himalayan climate inferred from
glacial ice flux, Geophys. Res. Lett., 30, 1764, https://doi.org/10.1029/2003GL017329, 2003. a
Herman, F. and Champagnac, J.-D.: Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change, Terra Nova, 28, 2–10,
https://doi.org/10.1111/ter.12186, 2016. a
Herman, F., Beaud, F., Champagnac, J., Lemieux, J. M., and Sternai, P.: Glacial hydrology and erosion patterns: a mechanism for carving glacial valleys, Earth Planet. Sc. Lett., 310, 498–508, https://doi.org/10.1016/j.epsl.2011.08.022, 2011. a, b, c, d
Hewitt, I. and Creyts, T.: A model for the formation of eskers, Geophys. Res.
Lett., 46, 6673–6680, https://doi.org/10.1029/2019GL082304, 2019. a
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005. a
Hildes, D. H., Clarke, G. K., Flowers, G. E., and Marshall, S. J.: Subglacial
erosion and englacial sediment transport modelled for North American ice
sheets, Quaternary Sci. Rev., 23, 409–430, https://doi.org/10.1016/j.quascirev.2003.06.005, 2004. a
Humphrey, N. F. and Raymond, C. F.: Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982–83, J.
Glaciol., 40, 539–552, https://doi.org/10.3189/s0022143000012429, 1994. a, b, c, d
Huss, M., Jouvet, G., Farinotti, D., and Bauder, A.: Future high-mountain
hydrology: a new parameterization of glacier retreat, Hydrol. Earth Syst.
Sci., 14, 815–829, https://doi.org/10.5194/hess-14-815-2010, 2010. a
Huybrechts, P.: Sea-level changes at the LGM from ice-dynamic reconstructions
of the Greenland and Antarctic ice sheets during the glacial cycles,
Quaternary Sci. Rev., 21, 203–231, https://doi.org/10.1016/s0277-3791(01)00082-8, 2002. a
Imhof, M.: Combined climate-ice flow modelling of the Alpine ice field during
the Last Glacial Maximum, PhD thesis, ETH Zürich, Zurich,
https://doi.org/10.3929/ethz-b-000471073, 2021. a
Imhof, M. A., Cohen, D., Seguinot, J., Aschwanden, A., Funk, M., and Jouvet,
G.: Modelling a paleo valley glacier network using a hybrid model: an
assessment with a Stokes ice flow model, J. Glaciol., 65, 1000–1010,
https://doi.org/10.1017/jog.2019.77, 2019. a
Iverson, N. R.: A theory of glacial quarrying for landscape evolution models,
Geology, 40, 679–682, https://doi.org/10.1130/G33079.1, 2012. a, b
Jansen, J., Knudsen, M., Andersen, J., Heyman, J., and Egholm, D.: Erosion
rates in Fennoscandia during the past million years, Quaternary Sci. Rev.,
207, 37–48, https://doi.org/10.1016/j.quascirev.2019.01.010, 2019. a, b
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A.,
Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen,
J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and Millennial Antarctic Climate Variability over the Past
800,000 Years, Science, 317, 793–796, https://doi.org/10.1126/science.1141038, 2007. a, b
Kelly, M. A., Buoncristiani, J.-F., and Schlüchter, C.: A reconstruction of the last glacial maximum (LGM) ice surface geometry in the western Swiss
Alps and contiguous Alpine regions in Italy and France, Eclog. Geol. Helv., 97, 57–75, https://doi.org/10.1007/s00015-004-1109-6, 2004. a
Kleman, J.: Preservation of landforms under ice sheets and ice caps,
Geomorphology, 9, 19–32, https://doi.org/10.1016/0169-555x(94)90028-0, 1994. a
Kleman, J., Stroeven, A. P., and Lundqvist, J.: Patterns of Quaternary ice
sheet erosion and deposition in Fennoscandia and a theoretical framework for
explanation, Geomorphology, 97, 73–90, https://doi.org/10.1016/j.geomorph.2007.02.049,
2008. a
Kleman, J., Jansson, K., De Angelis, H., Stroeven, A., Hättestrand, C.,
Alm, G., and Glasser, N.: North American ice sheet build-up during the last
glacial cycle, 115–21 kyr, Quaternary Sci. Rev., 29, 2036–2051,
https://doi.org/10.1016/j.quascirev.2010.04.021, 2010. a
Koppes, M. N. and Montgomery, D. R.: The relative efficacy of fluvial and
glacial erosion over modern to orogenic timescales, Nat. Geosci., 2, 644–647, https://doi.org/10.1038/ngeo616, 2009. a, b
Lai, J. and Anders, A. M.: Climatic controls on mountain glacier basal thermal regimes dictate spatial patterns of glacial erosion, Earth Surf. Dynam. Discuss. [preprint], https://doi.org/10.5194/esurf-2021-26, in review, 2021. a
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., and Saugy, J.: Sediment
export, transient landscape response and catchment-scale connectivity
following rapid climate warming and alpine glacier recession, Geomorphology,
277, 210–227, https://doi.org/10.1016/j.geomorph.2016.02.015, 2017. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004pa001071, 2005. a
MacGregor, K., Anderson, R., Anderson, S., and Waddington, E.: Numerical
simulations of glacial-valley longitudinal profile evolution, Geology, 28,
1031–1034, https://doi.org/10.1130/0091-7613(2000)28<1031:NSOGLP>2.0.CO;2, 2000. a
Margold, M., Jansson, K. N., Kleman, J., and Stroeven, A. P.: Glacial meltwater landforms of central British Columbia, J. Maps, 7, 486–506,
https://doi.org/10.4113/jom.2011.1205, 2011. a
Mariotti, A., Blard, P.-H., Charreau, J., Toucanne, S., Jorry, S., Molliex, S., Bourlès, D., Aumaitre, G., and Keddadouche, K.: Nonlinear forcing of
climate on mountain denudation during glaciations, Nat. Geosci., 14, 16–22,
https://doi.org/10.1038/s41561-020-00672-2, 2021. a, b
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., and Stocker, T. F.: Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin, Science, 317, 502–507,
https://doi.org/10.1126/science.1139994, 2007. a, b
Micheletti, N. and Lane, S. N.: Water yield and sediment export in small,
partially glaciated Alpine watersheds in a warming climate, Water Resour.
Res., 52, 4924–4943, https://doi.org/10.1002/2016WR018774, 2016. a
Moon, T., Joughin, I., Smith, B., and Howat, I.: 21st-Century Evolution of
Greenland Outlet Glacier Velocities, Science, 336, 576–578,
https://doi.org/10.1126/science.1219985, 2012. a
Mouginot, J., Rignot, E., and Scheuchl, B.: Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013, Geophys. Res. Lett., 41, 1576–1584, https://doi.org/10.1002/2013GL059069, 2014. a
Overeem, I., Hudson, B. D., Syvitski, J. P. M., Mikkelsen, A. B., Hasholt, B., van den Broeke, M. R., Noël, B. P. Y., and Morlighem, M.: Substantial
export of suspended sediment to the global oceans from glacial erosion in
Greenland, Nat. Geosci., 10, 859–863, https://doi.org/10.1038/NGEO3046, 2017. a
Patterson, T. and Kelso, N. V.: Natural Earth, Free vector and raster map
data, available at: http://naturalearthdata.com, last access: 22 November 2017. a
Pedersen, V. K., Huismans, R. S., Herman, F., and Egholm, D. L.: Controls of
initial topography on temporal and spatial patterns of glacial erosion,
Geomorphology, 223, 96–116, https://doi.org/10.1016/j.geomorph.2014.06.028, 2014. a
Penck, A.: Glacial Features in the Surface of the Alps, J. Geol., 13, 1–19,
https://doi.org/10.1086/621202, 1905. a
Preusser, F., Reitner, J. M., and Schlüchter, C.: Distribution, geometry,
age and origin of overdeepened valleys and basins in the Alps and their
foreland, Swiss J. Geosci., 103, 407–426, 2010. a
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.:
Quaternary glaciation history of northern Switzerland, Quaternary Sci. J., 60, 282–305, https://doi.org/10.3285/eg.60.2-3.06, 2011. a
Sanders, J. W., Cuffey, K. M., Moore, J. R., MacGregor, K. R., and Kavanaugh,
J. L.: Periglacial weathering and headwall erosion in cirque glacier bergschrunds, Geology, 40, 779–782, https://doi.org/10.1130/g33330.1, 2012. a
Seguinot, J.: Glacial quarrying and development of overdeepenings in glacial
valleys: modelling experiments and case studies at Erdalen, Western Norway,
École normale supérieure, Paris, https://doi.org/10.31237/osf.io/8fzd6, 2008. a
Seguinot, J.: Numerical modelling of the Cordilleran ice sheet, PhD thesis,
Stockholm University, Stockholm, available at: http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-106815 (last access: 2 August 2021), 2014. a
Seguinot, J.: Alpine ice sheet glacial cycle simulations aggregated variables
[data set], Zenodo, https://doi.org/10.5281/zenodo.3604174, 2019. a, b
Seguinot, J.: Alpine ice sheet glacial cycle simulations continuous variables
[data set], Zenodo, https://doi.org/10.5281/zenodo.3604142, 2020. a, b
Seguinot, J.: Alpine ice sheet erosion potential aggregated variables [data
set], Zenodo, https://doi.org/10.5281/zenodo.5084579, 2021a. a, b
Seguinot, J.: Alpine glaciers erosion potential over the last 120 000 years, vimeo, available at: https://vimeo.com/503162771 (last access: 2 August 2021), 2021b. a
Seguinot, J.: Alpine glacial cycle erosion vs ice volume, vimeo, available at: https://vimeo.com/512478926 (last access: 2 August 2021), 2021c. a
Seguinot, J.: Alpine glacial cycle erosion vs bedrock altitude, vimeo, available at: https://vimeo.com/512479008 (last access: 2 August 2021), 2021d. a
Seguinot, J., Rogozhina, I., Stroeven, A. P., Margold, M., and Kleman, J.:
Numerical simulations of the Cordilleran ice sheet through the last glacial
cycle, The Cryosphere, 10, 639–664, https://doi.org/10.5194/tc-10-639-2016, 2016. a
Steinemann, O., Ivy-Ochs, S., Grazioli, S., Luetscher, M., Fischer, U. H.,
Vockenhuber, C., and Synal, H.-A.: Quantifying glacial erosion on a limestone
bed and the relevance for landscape development in the Alps, Earth Surf.
Proc. Land., 45, 1401–1417, https://doi.org/10.1002/esp.4812, 2020. a, b, c
Steinemann, O., Ivy-Ochs, S., Hippe, K., Christl, M., Haghipour, N., and Synal, H.-A.: Glacial erosion by the Trift glacier (Switzerland): Deciphering the development of riegels, rock basins and gorges, Geomorphology, 375, 107533, https://doi.org/10.1016/j.geomorph.2020.107533, 2021. a, b, c
Sternai, P., Herman, F., Valla, P. G., and Champagnac, J.-D.: Spatial and
temporal variations of glacial erosion in the Rhone valley (Swiss Alps): Insights from numerical modeling, Earth Planet. Sc. Lett., 368, 119–131, 2013. a
Thomson, S., Brandon, M., Tomkin, J., Reiners, P., Vásquez, C., and Wilson, N.: Glaciation as a destructive and constructive control on mountain
building, Nature, 467, 313–317, https://doi.org/10.1038/nature09365, 2010. a
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of Ice Stream B, west Antarctica: 1. Till mechanics, J. Geophys. Res., 105, 463–481, https://doi.org/10.1029/1999jb900329, 2000. a
Ugelvig, S., Egholm, D., Anderson, R., and Iverson, N.: Glacial erosion driven by variations in meltwater drainage, J. Geophys. Res.-Earth, 123,
2863–2877, https://doi.org/10.1029/2018JF004680, 2018. a, b, c, d
Valla, P. G., Shuster, D. L., and van der Beek, P. A.: Significant increase in relief of the European Alps during mid-Pleistocene glaciations, Nat. Geosci., 4, 688–692, https://doi.org/10.1038/ngeo1242, 2011. a
Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E.: Modeling
channelized and distributed subglacial drainage in two dimensions, J. Geophys. Res.-Earth, 118, 2140–2158, https://doi.org/10.1002/jgrf.20146, 2013.
a
Willenbring, J. and Von Blanckenburg, F.: Long-term stability of global erosion rates and weathering during late-Cenozoic cooling, Nature, 465, 211–214, https://doi.org/10.1038/nature09044, 2010. a
Wirsig, C., Zasadni, J., Christl, M., Akçar, N., and Ivy-Ochs, S.: Dating
the onset of LGM ice surface lowering in the High Alps, Quaternary Sci. Rev., 143, 37–50, https://doi.org/10.1016/j.quascirev.2016.05.001, 2016. a
Zekollari, H. and Huybrechts, P.: On the climate–geometry imbalance, response time and volume–area scaling of an alpine glacier: insights from a 3-D flow model applied to Vadret da Morteratsch, Switzerland, Ann. Glaciol., 56, 51–62, https://doi.org/10.3189/2015aog70a921, 2015. a
Short summary
Ancient Alpine glaciers have carved a fascinating landscape of piedmont lakes, glacial valleys, and mountain cirques. Using a previous supercomputer simulation of glacier flow, we show that glacier erosion has constantly evolved and moved to different parts of the Alps. Interestingly, larger glaciers do not always cause more rapid erosion. Instead, glacier erosion is modelled to slow down during glacier advance and peak during phases of retreat, such as the one the Earth is currently undergoing.
Ancient Alpine glaciers have carved a fascinating landscape of piedmont lakes, glacial valleys,...