Articles | Volume 11, issue 6
https://doi.org/10.5194/esurf-11-1013-2023
https://doi.org/10.5194/esurf-11-1013-2023
Research article
 | 
30 Oct 2023
Research article |  | 30 Oct 2023

Spatial and temporal variations in rockwall erosion rates derived from cosmogenic 10Be in medial moraines at five valley glaciers around Pigne d'Arolla, Switzerland

Katharina Wetterauer and Dirk Scherler

Related authors

Introducing a glacier forefield monitoring site network to understand succession in the Northern Limestone Alps
Ingolf Kühn, Christian Hecht, Ulrike Herzschuh, and Dirk Scherler
Web Ecol., 25, 157–168, https://doi.org/10.5194/we-25-157-2025,https://doi.org/10.5194/we-25-157-2025, 2025
Short summary
Land surface temperature trends derived from Landsat imagery in the Swiss Alps
Deniz Tobias Gök, Dirk Scherler, and Hendrik Wulf
The Cryosphere, 18, 5259–5276, https://doi.org/10.5194/tc-18-5259-2024,https://doi.org/10.5194/tc-18-5259-2024, 2024
Short summary
The story of a summit nucleus: hillslope boulders and their effect on erosional patterns and landscape morphology in the Chilean Coastal Cordillera
Emma Lodes, Dirk Scherler, Renee van Dongen, and Hella Wittmann
Earth Surf. Dynam., 11, 305–324, https://doi.org/10.5194/esurf-11-305-2023,https://doi.org/10.5194/esurf-11-305-2023, 2023
Short summary
Climatic control on seasonal variations in mountain glacier surface velocity
Ugo Nanni, Dirk Scherler, Francois Ayoub, Romain Millan, Frederic Herman, and Jean-Philippe Avouac
The Cryosphere, 17, 1567–1583, https://doi.org/10.5194/tc-17-1567-2023,https://doi.org/10.5194/tc-17-1567-2023, 2023
Short summary
High-resolution debris-cover mapping using UAV-derived thermal imagery: limits and opportunities
Deniz Tobias Gök, Dirk Scherler, and Leif Stefan Anderson
The Cryosphere, 17, 1165–1184, https://doi.org/10.5194/tc-17-1165-2023,https://doi.org/10.5194/tc-17-1165-2023, 2023
Short summary

Cited articles

Anderson, R. S.: Near-surface thermal profiles in alpine bedrock: implications for the frost weathering of rock, Arctic Alpine Res., 30, 362–372, https://doi.org/10.2307/1552008, 1998. 
Anderson, R. S.: A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts, J. Glaciol., 46, 459–469, https://doi.org/10.3189/172756500781833025, 2000. 
Arsenault, A. M. and Meigs, A. J.: Contribution of deep-seated bedrock landslides to erosion of a glaciated basin in southern Alaska, Earth Surf. Proc. Land., 30, 1111–1125, https://doi.org/10.1002/esp.1265, 2005. 
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008. 
Bundesamt für Umwelt (BAFU): Hinweiskarte der potenziellen Permafrostverbreitung, https://map.geo.admin.ch (last access: 14 November 2022), 2005. 
Download
Short summary
In glacial landscapes, debris supply rates vary spatially and temporally. Rockwall erosion rates derived from cosmogenic 10Be concentrations in medial moraine debris at five Swiss glaciers around Pigne d'Arolla indicate an increase in erosion from the end of the Little Ice Age towards deglaciation but temporally more stable rates over the last ∼100 years. Rockwall erosion rates are higher where rockwalls are steep and north-facing, suggesting a potential slope and temperature control.
Share