Articles | Volume 12, issue 5
https://doi.org/10.5194/esurf-12-973-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-973-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drainage rearrangement in an intra-continental mountain belt: a case study from the central South Tian Shan, Kyrgyzstan
Institut für Geowissenschaften, Universität Potsdam, 14476 Potsdam, Germany
Peter van der Beek
Institut für Geowissenschaften, Universität Potsdam, 14476 Potsdam, Germany
Taylor F. Schildgen
Institut für Geowissenschaften, Universität Potsdam, 14476 Potsdam, Germany
GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Edward R. Sobel
Institut für Geowissenschaften, Universität Potsdam, 14476 Potsdam, Germany
Simone Racano
Institut für Geowissenschaften, Universität Potsdam, 14476 Potsdam, Germany
Apolline Mariotti
GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Fergus McNab
GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Related authors
No articles found.
Zihao Zhao, Tianyi Shen, Guocan Wang, Peter van der Beek, Yabo Zhou, and Cheng Ma
Solid Earth, 16, 503–530, https://doi.org/10.5194/se-16-503-2025, https://doi.org/10.5194/se-16-503-2025, 2025
Short summary
Short summary
This study examines the evolution of the Harlik Mountains in the eastern Tian Shan. Low-relief surfaces were formed by the Early Cretaceous erosion and subsequent tectonic stability. Later fault activity segmented these surfaces, with uplift and tilting in the Cenozoic driven by tectonic reactivation. These findings provide insights into how landscapes evolve in response to geological and environmental changes over millions of years.
Fergus McNab, Taylor F. Schildgen, Jens Martin Turowski, and Andrew D. Wickert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2468, https://doi.org/10.5194/egusphere-2025-2468, 2025
Short summary
Short summary
Alluvial rivers form networks, but many concepts we use to analyse their long-term evolution derive from models that treat them as single streams. We develop a model including tributary interactions and show that, while patterns of sediment output can be similar for network and single-segment models, complex signal propagation affects aggradation and incision within networks. We argue that understanding a specific catchment's evolution requires a model with its specific network structure.
Jens M. Turowski, Fergus McNab, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 13, 97–117, https://doi.org/10.5194/esurf-13-97-2025, https://doi.org/10.5194/esurf-13-97-2025, 2025
Short summary
Short summary
Channel belts comprise the area affected by a river due to lateral migration and floods. As a landform, they affect water resources and flood hazard, and they often host unique ecological communities. We develop a model describing the evolution of channel-belt area over time. The model connects the behaviour of the river to the evolution of the channel belt over a timescale of centuries. A comparison to selected data from experiments and real river systems verifies the random walk approach.
Elizabeth N. Orr, Taylor F. Schildgen, Stefanie Tofelde, Hella Wittmann, and Ricardo N. Alonso
Earth Surf. Dynam., 12, 1391–1413, https://doi.org/10.5194/esurf-12-1391-2024, https://doi.org/10.5194/esurf-12-1391-2024, 2024
Short summary
Short summary
Fluvial terraces and alluvial fans in the Toro Basin, NW Argentina, record river evolution and global climate cycles over time. Landform dating reveals lower-frequency climate cycles (100 kyr) preserved downstream and higher-frequency cycles (21/40 kyr) upstream, supporting theoretical predications that longer rivers filter out higher-frequency climate signals. This finding improves our understanding of the spatial distribution of sedimentary paleoclimate records within landscapes.
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
Solid Earth, 14, 153–179, https://doi.org/10.5194/se-14-153-2023, https://doi.org/10.5194/se-14-153-2023, 2023
Short summary
Short summary
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe, and ZHe) and stratigraphic analysis. QTQt thermal models are combined with burial diagrams to retrieve the timing and magnitude of sedimentary burial, tectonic burial, and subsequent exhumation of the wedge's nappes from 34 to ∼12 Ma. Out-of-sequence thrusting and sediment recycling during wedge building are also identified. This elucidates the evolution of a typical wedge in a roll-back subduction zone.
Peter van der Beek and Taylor F. Schildgen
Geochronology, 5, 35–49, https://doi.org/10.5194/gchron-5-35-2023, https://doi.org/10.5194/gchron-5-35-2023, 2023
Short summary
Short summary
Thermochronometric data can provide unique insights into the patterns of rock exhumation and the driving mechanisms of landscape evolution. Several well-established thermal models allow for a detailed exploration of how cooling rates evolved in a limited area or along a transect, but more regional analyses have been challenging. We present age2exhume, a thermal model that can be used to rapidly provide a synoptic overview of exhumation rates from large regional thermochronologic datasets.
Johannes Rembe, Renjie Zhou, Edward R. Sobel, Jonas Kley, Jie Chen, Jian-Xin Zhao, Yuexing Feng, and Daryl L. Howard
Geochronology, 4, 227–250, https://doi.org/10.5194/gchron-4-227-2022, https://doi.org/10.5194/gchron-4-227-2022, 2022
Short summary
Short summary
Calcite is frequently formed during alteration processes in the basaltic, uppermost layer of juvenile oceanic crust. Weathered oceanic basalts are hard to date with conventional radiometric methods. We show in a case study from the North Pamir, Central Asia, that calcite U–Pb age data, supported by geochemistry and petrological microscopy, have potential to date sufficiently old oceanic basalts, if the time span between basalt extrusion and latest calcite precipitation (~ 25 Myr) is considered.
Coline Ariagno, Caroline Le Bouteiller, Peter van der Beek, and Sébastien Klotz
Earth Surf. Dynam., 10, 81–96, https://doi.org/10.5194/esurf-10-81-2022, https://doi.org/10.5194/esurf-10-81-2022, 2022
Short summary
Short summary
The
critical zonenear the surface of the Earth is where geologic substrate, erosion, climate, and life meet and interact. This study focuses on mechanisms of physical weathering that produce loose sediment and make it available for transport. We show that the sediment export from a monitored catchment in the French Alps is modulated by frost-weathering processes and is therefore sensitive to complex modifications in a warming climate.
Xiong Ou, Anne Replumaz, and Peter van der Beek
Solid Earth, 12, 563–580, https://doi.org/10.5194/se-12-563-2021, https://doi.org/10.5194/se-12-563-2021, 2021
Short summary
Short summary
The low-relief, mean-elevation Baima Xueshan massif experienced slow exhumation at a rate of 0.01 km/Myr since at least 22 Ma and then regional rock uplift at 0.25 km/Myr since ~10 Ma. The high-relief, high-elevation Kawagebo massif shows much stronger local rock uplift related to the motion along a west-dipping thrust fault, at a rate of 0.45 km/Myr since at least 10 Ma, accelerating to 1.86 km/Myr since 1.6 Ma. Mekong River incision plays a minor role in total exhumation in both massifs.
Cited articles
Abdrakhmatov, K. Y., Aldazhanov, S. A., Hager, B. H., Hamburger, M. W., Herring, T. A., Kalabaev, K. B., Makarov, V. I., Molnar, P., Panasyuk, S. V., Prilepin, M. T., Reilinger, R. E., Sadybakasov, I. S., Souter, B. J., Trapeznikov, Y. A., Tsurkov, V. Y., and Zubovich, A. V.: Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates, Nature, 384, 450–453, https://doi.org/10.1038/384450a0, 1996.
Abdrakhmatov, K. E., Weldon, R., Thompson, S., Burbank, D., Ch, R., Miller, M., and Molnar, P.: Origin, direction, and rate of modern compression of the central Tien Shan (Kyrgyzstan), Russ. Geol. Geophys., 42, 1585–1609, 2001.
Babault, J., Van Den Driessche, J., and Teixell, A.: Longitudinal to transverse drainage network evolution in the High Atlas (Morocco): The role of tectonics, Tectonics, 31, 1–15, https://doi.org/10.1029/2011TC003015, 2012.
Babault, J., Teixell, A., Struth, L., Van Den Driessche, J., Arboleya, M. L., and Tesón, E.: Shortening, structural relief and drainage evolution in inverted rifts: Insights from the Atlas Mountains, the eastern Cordillera of Colombia and the Pyrenees, Geol. Soc. Spec. Publ., 377, 141–158, https://doi.org/10.1144/SP377.14, 2013.
Babault, J., Viaplana-Muzas, M., Legrand, X., Van Den Driessche, J., González-Quijano, M., and Mudd, S. M.: Source-to-sink constraints on tectonic and sedimentary evolution of the western Central Range and Cenderawasih Bay (Indonesia), J. Asian Earth Sci., 156, 265–287, https://doi.org/10.1016/j.jseaes.2018.02.004, 2018.
Bazhenov, M. L. and Mikolaichuk, A. V.: Structural evolution of Central Asia to the north of Tibet: A synthesis of paleomagnetic and geological data, Geotectonics, 38, 379–393, 2004.
Bazhenov, M. L., Collins, A. Q., Degtyarev, K. E., Levashova, N. M., Mikolaichuk, A. V., Pavlov, V. E., and Van der Voo, R.: Paleozoic northward drift of the North Tien Shan (Central Asia) as revealed by Ordovician and Carboniferous paleomagnetism, Tectonophysics, 366, 113–141, https://doi.org/10.1016/S0040-1951(03)00075-1, 2003.
Berlin, M. M. and Anderson, R. S.: Modeling of knickpoint retreat on the Roan Plateau, western Colorado, J. Geophys. Res.-Earth, 112, F03S06, https://doi.org/10.1029/2006JF000553, 2007.
Bishop, P.: Drainage rearrangement by river capture, beheading and diversion, Prog. Phys. Geog. Earth Environ., 19, 449–473, https://doi.org/10.1177/030913339501900402, 1995.
Biske, Y. S.: Late Paleozoic collision of the Tarimskiy and Kirghiz–Kazakh paleocontinents (English translation), Geotectonics, 29, 26–34, 1995.
Blomdin, R., Stroeven, A. P., Harbor, J. M., Lifton, N. A., Heyman, J., Gribenski, N., Petrakov, D. A., Caffee, M. W., Ivanov, M. N., Hättestrand, C., Rogozhina, I., and Usubaliev, R.: Evaluating the timing of former glacier expansions in the Tian Shan: A key step towards robust spatial correlations, Quaternary Sci. Rev., 153, 78–96, https://doi.org/10.1016/j.quascirev.2016.07.029, 2016.
Boschman, L. M., Carraro, L., Cassemiro, F. A. S., de Vries, J., Altermatt, F., Hagen, O., Hoorn, C., and Pellissier, L.: Freshwater fish diversity in the western Amazon basin shaped by Andean uplift since the Late Cretaceous, Nat. Ecol. Evol., 7, 2037–2044, https://doi.org/10.1038/s41559-023-02220-8, 2023.
Burbank, D. W., Mclean, J. K., Bullen, M., Abdrakhmatov, K. Y., and Miller, M. M.: Partitioning of intermontane basins by thrust-related folding, Tien Shan, Kyrgyzstan, Basin Res., 11, 75–92, https://doi.org/10.1046/j.1365-2117.1999.00086.x, 1999.
Burtman, V. S.: Structural geology of the Tien Shan, USSR, Journ. Sci., 275-A, 157–186, 1975.
Burtman, V. S.: Tien Shan, Pamir, and Tibet: History and geodynamics of Phanerozoic oceanic basins, Geotectonics, 44, 388–404, https://doi.org/10.1134/S001685211005002X, 2010.
Chang, J., Li, D., Min, K., Qiu, N., Xiao, Y., Wu, H., and Liu, N.: Cenozoic deformation of the Kalpin fold-and-thrust belt, southern Chinese Tian Shan: New insights from low-T thermochronology and sandbox modeling, Tectonophysics, 766, 416–432, https://doi.org/10.1016/j.tecto.2019.06.018, 2019.
Chang, J., Glorie, S., Qiu, N., Min, K., Xiao, Y., and Xu, W.: Late Miocene (10.0 ∼ 6.0 Ma) Rapid Exhumation of the Chinese South Tianshan: Implications for the Timing of Aridification in the Tarim Basin, Geophys. Res. Lett., 48, e2020GL090623, https://doi.org/10.1029/2020GL090623, 2021.
Charreau, J., Blard, P.-H., Puchol, N., Avouac, J.-P., Lallier-Vergès, E., Bourlès, D., Braucher, R., Gallaud, A., Finkel, R., Jolivet, M., Chen, Y., and Roy, P.: Paleo-erosion rates in Central Asia since 9 Ma: A transient increase at the onset of Quaternary glaciations?, Earth Planet. Sc. Lett., 304, 85–92, https://doi.org/10.1016/j.epsl.2011.01.018, 2011.
Charreau, J., Saint-Carlier, D., Dominguez, S., Lavé, J., Blard, P. H., Avouac, J. P., Jolivet, M., Chen, Y., Wang, S. L., Brown, N. D., Malatesta, L. C., and Rhodes, E.: Denudation outpaced by crustal thickening in the eastern Tianshan, Earth Planet. Sc. Lett., 479, 179–191, https://doi.org/10.1016/j.epsl.2017.09.025, 2017.
Charreau, J., Blard, P., Zumaque, J., Martin, L. C. P., Delobel, T., and Szafran, L.: Basinga: A cell-by-cell GIS toolbox for computing basin average scaling factors, cosmogenic production rates and denudation rates, Earth Surf. Proc. Land., 44, 2349–2365, https://doi.org/10.1002/esp.4649, 2019.
Charreau, J., Blard, P.-H., Lavé, J., Dominguez, S., and Li, W. S.: Unsteady topography in the eastern Tianshan due to imbalance between denudation and crustal thickening, Tectonophysics, 848, 229702, https://doi.org/10.1016/j.tecto.2022.229702, 2023.
Chen, Y., Li, W., Deng, H., Fang, G., and Li, Z.: Changes in Central Asia's Water Tower: Past, Present and Future, Sci. Rep., 6, 35458, https://doi.org/10.1038/srep35458, 2016.
Clementucci, R., Ballato, P., Siame, L., Fox, M., Lanari, R., Sembroni, A., Faccenna, C., Yaaqoub, A., and Essaifi, A.: Surface Uplift and Topographic Rejuvenation of a Tectonically Inactive Range: Insights From the Anti-Atlas and the Siroua Massif (Morocco), Tectonics, 42, e2022TC007383, https://doi.org/10.1029/2022TC007383, 2023.
Craw, D., Upton, P., Burridge, C. P., Wallis, G. P., and Waters, J. M.: Rapid biological speciation driven by tectonic evolution in New Zealand, Nat. Geosci., 9, 140–144, https://doi.org/10.1038/ngeo2618, 2016.
Crosby, B. T. and Whipple, K. X.: Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand, Geomorphology, 82, 16–38, https://doi.org/10.1016/j.geomorph.2005.08.023, 2006.
Cunningham, D., Owen, L., Snee, L., and Jiliang, L.: Structural framework of a major intracontinental orogenic termination zone: the easternmost Tien Shan, China, J. Geol. Soc., 160, 575–590, https://doi.org/10.1144/0016-764902-122, 2003.
DiBiase, R. A., Whipple, K. X., Heimsath, A. M., and Ouimet, W. B.: Landscape form and millennial erosion rates in the San Gabriel Mountains, CA, Earth Planet. Sc. Lett., 289, 134–144, https://doi.org/10.1016/j.epsl.2009.10.036, 2010.
Dumitru, T. A., Zhou, D., Chang, E. Z., Graham, S. A., Hendrix, M. S., Sobel, E. R., and Carroll, A. R.: Uplift, exhumation, and deformation in the Chinese Tian Shan, in: Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation, Geol. Soc. Am. Mem., 194, https://doi.org/10.1130/0-8137-1194-0.71, 71–99, 2001.
European Space Agency: Copernicus Glo-30 Global Digital Elevation Model, Copernicus DEM [data set], https://doi.org/10.5270/ESA-c5d3d65, 2015.
Fadul, C. M., Oliveira, P., and Val, P.: Ongoing landscape transience in the eastern Amazon Craton consistent with lithologic control of base level, Earth Surf. Proc. Land., 47, 3117–3132, https://doi.org/10.1002/esp.5447, 2022.
Flint, J. J.: Stream gradient as a function of order, magnitude, and discharge, Water Resour. Res., 10, 969–973, https://doi.org/10.1029/WR010i005p00969, 1974.
Forte, A. M. and Whipple, K. X.: Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox, Earth Surf. Dynam., 7, 87–95, https://doi.org/10.5194/esurf-7-87-2019, 2019 (code available at: https://github.com/amforte/Topographic-Analysis-Kit.git, last access: 2 September 2024).
Frisch, K., Voigt, S., Verestek, V., Appel, E., Albert, R., Gerdes, A., Arndt, I., Raddatz, J., Voigt, T., Weber, Y., and Batenburg, S. J.: Long-Period Astronomical Forcing of Westerlies' Strength in Central Asia During Miocene Climate Cooling, Paleoceanography and Paleoclimatology, 34, 1784–1806, https://doi.org/10.1029/2019PA003642, 2019.
Gailleton, B., Mudd, S. M., Clubb, F. J., Grieve, S. W. D., and Hurst, M. D.: Impact of Changing Concavity Indices on Channel Steepness and Divide Migration Metrics, J. Geophys. Res.-Earth, 126, e2020JF006060, https://doi.org/10.1029/2020JF006060, 2021.
Gallen, S. F. and Wegmann, K. W.: River profile response to normal fault growth and linkage: an example from the Hellenic forearc of south-central Crete, Greece, Earth Surf. Dynam., 5, 161–186, https://doi.org/10.5194/esurf-5-161-2017, 2017.
Garcia-Castellanos, D. and Jiménez-Munt, I.: Topographic Evolution and Climate Aridification during Continental Collision: Insights from Computer Simulations, PLOS ONE, 10, e0132252, https://doi.org/10.1371/journal.pone.0132252, 2015.
Giachetta, E. and Willett, S. D.: Effects of River Capture and Sediment Flux on the Evolution of Plateaus: Insights From Numerical Modeling and River Profile Analysis in the Upper Blue Nile Catchment, J. Geophys. Res.-Earth, 123, 1187–1217, https://doi.org/10.1029/2017JF004252, 2018.
Glorie, S., De Grave, J., Buslov, M. M., Zhimulev, F. I., Stockli, D. F., Batalev, V. Y., Izmer, A., Van Den Haute, P., Vanhaecke, F., and Elburg, M. A.: Tectonic history of the Kyrgyz South Tien Shan (Atbashi-Inylchek) suture zone: The role of inherited structures during deformation-propagation, Tectonics, 30, https://doi.org/10.1029/2011TC002949, 2011.
Goren, L., Fox, M., and Willett, S. D.: Tectonics from fluvial topography using formal linear inversion: Theory and applications to the Inyo Mountains, California, J. Geophys. Res.-Earth, 119, 1651–1681, https://doi.org/10.1002/2014JF003079, 2014.
Grin, E., Schaller, M., and Ehlers, T. A.: Spatial distribution of cosmogenic 10Be derived denudation rates between the Western Tian Shan and Northern Pamir, Tajikistan, Geomorphology, 321, 1–15, https://doi.org/10.1016/j.geomorph.2018.08.007, 2018.
Guan, X., Yao, J., and Schneider, C.: Variability of the precipitation over the Tianshan Mountains, Central Asia. Part I: Linear and nonlinear trends of the annual and seasonal precipitation, Int. J. Climatol., 42, 118–138, https://doi.org/10.1002/joc.7235, 2022.
Gupta, S.: Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin, Geology, 25, 11, https://doi.org/10.1130/0091-7613(1997)025<0011:HDPATO>2.3.CO;2, 1997.
Harkins, N., Kirby, E., Heimsath, A., Robinson, R., and Reiser, U.: Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China, J. Geophys. Res.-Earth, 112, 1–21, https://doi.org/10.1029/2006JF000570, 2007.
He, C., Yang, C.-J., Turowski, J. M., Ott, R. F., Braun, J., Tang, H., Ghantous, S., Yuan, X., and Stucky de Quay, G.: A global dataset of the shape of drainage systems, Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, 2024a.
He, C., Braun, J., Tang, H., Yuan, X., Acevedo-Trejos, E., Ott, R. F., and Stucky de Quay, G.: Drainage divide migration and implications for climate and biodiversity, Nat. Rev. Earth Environ., 5, 177–192, https://doi.org/10.1038/s43017-023-00511-z, 2024b.
Heidarzadeh, G., Ballato, P., Hassanzadeh, J., Ghassemi, M. R., and Strecker, M. R.: Lake overspill and onset of fluvial incision in the Iranian Plateau: Insights from the Mianeh Basin, Earth Planet. Sc. Lett., 469, 135–147, https://doi.org/10.1016/j.epsl.2017.04.019, 2017.
Hendrix, M. S., Graham, S. A., Carroll, A. R., Sobel, E. R., McKnight, C. L., Schulein, B. J., and Wang, Z.: Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China, Geol. Soc. Am. Bull., 104, 53–79, https://doi.org/10.1130/0016-7606(1992)104<0053:SRACIO>2.3.CO;2, 1992.
Horton, B. K. and Decelles, P. G.: Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: implications for drainage network evolution in fold-thrust belts, Basin Res., 13, 43–63, https://doi.org/10.1046/j.1365-2117.2001.00137.x, 2001.
Hovius, N.: Regular spacing of drainage outlets from linear mountain belts, Basin Res., 8, 29–44, https://doi.org/10.1111/j.1365-2117.1996.tb00113.x, 1996.
Izquierdo-Llavall, E., Roca, E., Xie, H., Pla, O., Muñoz, J. A., Rowan, M. G., Yuan, N., and Huang, S.: Influence of Overlapping décollements, Syntectonic Sedimentation, and Structural Inheritance in the Evolution of a Contractional System: The Central Kuqa Fold-and-Thrust Belt (Tian Shan Mountains, NW China), Tectonics, 37, 2608–2632, https://doi.org/10.1029/2017TC004928, 2018.
Jia, Y., Sun, J., Lü, L., Pang, J., and Wang, Y.: Late Oligocene-Miocene intra-continental mountain building of the Harke Mountains, southern Chinese Tian Shan: Evidence from detrital AFT and AHe analysis, J. Asian Earth Sci., 191, 104198, https://doi.org/10.1016/j.jseaes.2019.104198, 2020.
Jia, Y., Glotzbach, C., Lü, L., and Ehlers, T. A.: Cenozoic Tectono-Geomorphologic Evolution of the Pamir-Tian Shan Convergence Zone: Evidence From Detrital Zircon U-Pb Provenance Analyses, Tectonics, 40, e2020TC006345, https://doi.org/10.1029/2020TC006345, 2021.
Jolivet, M., Dominguez, S., Charreau, J., Chen, Y., Li, Y., and Wang, Q.: Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation, Tectonics, 29, TC6019, https://doi.org/10.1029/2010TC002712, 2010.
Jourdon, A., Petit, C., Rolland, Y., Loury, C., Bellahsen, N., Guillot, S., Le Pourhiet, L., and Ganino, C.: New structural data on Late Paleozoic tectonics in the Kyrgyz Tien Shan (Central Asian Orogenic Belt), Gondwana Res., 46, 57–78, https://doi.org/10.1016/j.gr.2017.03.004, 2017.
Jourdon, A., Le Pourhiet, L., Petit, C., and Rolland, Y.: Impact of range-parallel sediment transport on 2D thermo-mechanical models of mountain belts: Application to the Kyrgyz Tien Shan, Terra Nova, 30, 279–288, https://doi.org/10.1111/ter.12337, 2018.
Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional landscapes, J. Struct. Geol., 44, 54–75, https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
Kudriavtseva, A., Codilean, A.T., Sobel, E.R., Landgraf, A., Fülöp, R.H., Dzhumabaeva, A., Abdrakhmatov, K., Wilcken, K.M., Schildgen, T., Fink, D., Fujioka, T., Gong, L., Rosenwinkel, S., Merchel, S., and Rugel, G.: Impact of Quaternary glaciations on denudation rates in North Pamir–Tian Shan inferred from cosmogenic 10Be and low‐temperature thermochronology, J. Geophys. Res.-Earth, 128, e2023JF007193, https://doi.org/10.1029/2023JF007193, 2023.
Lague, D.: The stream power river incision model: Evidence, theory and beyond, Earth Surf. Proc. Land., 39, 38–61, https://doi.org/10.1002/esp.3462, 2014.
Li, W., Chen, Y., Yuan, X., Xiao, W., and Windley, B. F.: Intracontinental deformation of the Tianshan Orogen in response to India-Asia collision, Nat. Commun., 13, 3738, https://doi.org/10.1038/s41467-022-30795-6, 2022.
Lifton, N., Beel, C., Hättestrand, C., Kassab, C., Rogozhina, I., Heermance, R., Oskin, M., Burbank, D., Blomdin, R., Gribenski, N., Caffee, M., Goehring, B. M., Heyman, J., Ivanov, M., Li, Y., Li, Y., Petrakov, D., Usubaliev, R., Codilean, A. T., Chen, Y., Harbor, J., and Stroeven, A. P.: Constraints on the late Quaternary glacial history of the Inylchek and Sary-Dzaz valleys from in situ cosmogenic 10Be and 26Al, eastern Kyrgyz Tian Shan, Quaternary Sci. Rev., 101, 77–90, https://doi.org/10.1016/j.quascirev.2014.06.032, 2014.
Lü, L., Li, T., Chen, Z., Chen, J., Jobe, J. T., and Fang, L.: Active Structural Geometries and Their Correlation With Moderate (M 5.5–7.0) Earthquakes in the Jiashi–Keping Region, Tian Shan Southwestern Front, Tectonics, 40, e2021TC006760, https://doi.org/10.1029/2021TC006760, 2021.
Lyu, L., Li, T., Jia, Y., and Chen, J.: Multi-stage Cenozoic exhumation history of southern Central Tian Shan: implications for geodynamic and sedimentary evolution, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7773, https://doi.org/10.5194/egusphere-egu24-7773, 2024.
Macaulay, E. A., Sobel, E. R., Mikolaichuk, A., Landgraf, A., Kohn, B., and Stuart, F.: Thermochronologic insight into late Cenozoic deformation in the basement-cored Terskey Range, Kyrgyz Tien Shan, Tectonics, 32, 487–500, https://doi.org/10.1002/tect.20040, 2013.
Macaulay, E. A., Sobel, E. R., Mikolaichuk, A., Kohn, B., and Stuart, F. M.: Cenozoic deformation and exhumation history of the Central Kyrgyz Tien Shan, Tectonics, 33, 135–165, https://doi.org/10.1002/2013TC003376, 2014.
Macaulay, E. A., Sobel, E. R., Mikolaichuk, A., Wack, M., Gilder, S. A., Mulch, A., Fortuna, A. B., Hynek, S., and Apayarov, F.: The sedimentary record of the Issyk Kul basin, Kyrgyzstan: climatic and tectonic inferences, Basin Res., 28, 57–80, https://doi.org/10.1111/bre.12098, 2016.
MacGregor, K. R., Anderson, R. S., Anderson, S. P., and Waddington, E. D.: Numerical simulations of glacial-valley longitudinal profile evolution, Geology, 28, 1031–1034, https://doi.org/10.1130/0091-7613(2000)028<1031:NSOGVL>2.3.CO;2, 2000.
Malatesta, L. C. and Avouac, J. P.: Contrasting river incision in north and south Tian Shan piedmonts due to variable glacial imprint in mountain valleys, Geology, 46, 659–662, https://doi.org/10.1130/G40320.1, 2018.
Marrucci, M., Zeilinger, G., Ribolini, A., and Schwanghart, W.: Origin of knickpoints in an Alpine context subject to different perturbing factors, Stura Valley, Maritime Alps (North-Western Italy), Geosciences, 8, 10–13, https://doi.org/10.3390/geosciences8120443, 2018.
McNab, F. and Gong, L.: Simulating knickpoint migration due to drainage capture and accelerated base-level fall with the 1D detachment-limited stream-power law, Zenodo [code], https://doi.org/10.5281/zenodo.11505509, 2024.
Mikolaichuk, A., Apayarov, F., and Gordeev, D.: Correlation of geological complexes of the Khan-Tengri Mountain massif, Earth ArXiv [preprint], https://doi.org/10.31223/X5KM18, 2022.
Mikolaichuk, A. V., Apayarov, F. K., Buchroithner, M. F., Chernavskaja, Z. I., Skrinnik, L. I., Ghes, M. D., Esmintsev, A. N., Charimov, T. A.: Digital Geological Map of the Khan Tengri Massif (Kyrgyzstan), ISTC Project No. KR-920, map and report, https://www.kyrgyzstan.ethz.ch/other-projects/istc-project-no-kr-920/index.html (last access: 22 August 2024), 2008.
Montgomery, D. R.: Slope Distributions, Threshold Hillslopes, and Steady-state Topography, Am. J. Sci., 301, 432–454, https://doi.org/10.2475/ajs.301.4-5.432, 2001.
Morin, J., Jolivet, M., Barrier, L., Laborde, A., Li, H., and Dauteuil, O.: Planation surfaces of the Tian Shan Range (Central Asia): Insight on several 100 million years of topographic evolution, J. Asian Earth Sci., 177, 52–65, https://doi.org/10.1016/j.jseaes.2019.03.011, 2019.
Mudd, S. M., Clubb, F. J., Gailleton, B., and Hurst, M. D.: How concave are river channels?, Earth Surf. Dynam., 6, 505–523, https://doi.org/10.5194/esurf-6-505-2018, 2018.
Neely, A. B., Bookhagen, B., and Burbank, D. W.: An automated knickzone selection algorithm (KZ-Picker) to analyze transient landscapes: Calibration and validation, J. Geophys. Res.-Earth, 122, 1236–1261, https://doi.org/10.1002/2017JF004250, 2017.
Niemann, J. D., Gasparini, N. M., Tucker, G. E., and Bras, R. L.: A quantitative evaluation of Playfair's law and its use in testing long-term stream erosion models, Earth Surf. Proc. Land., 26, 1317–1332, https://doi.org/10.1002/esp.272, 2001.
Oberlander, T. M.: The origin of drainage transverse to structures in orogens, in: Tectonic Geomorphology, edited by: Morisawa, M. and Hack, J. T., Allen & Unwin, Boston, USA, 155–182, ISBN 0-04-551098-9, 1985.
Ouimet, W. B., Whipple, K. X., and Granger, D. E.: Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges, Geology, 37, 579–582, https://doi.org/10.1130/G30013A.1, 2009.
Penserini, B. D., Morell, K. D., Codilean, A. T., Fülöp, R. H., Wilcken, K. M., Yanites, B. J., Kumar, A., Fan, S., and Mearce, T.: Magnitude and timing of transient incision resulting from large‐scale drainage capture, Sutlej River, Northwest Himalaya, Earth Surf. Proc. Land., 49, 334–353, 2024.
Perron, J. T. and Royden, L.: An integral approach to bedrock river profile analysis, Earth Surf. Proc. Land., 38, 570–576, https://doi.org/10.1002/esp.3302, 2013.
Prud'homme, C., Scardia, G., Vonhof, H., Guinoiseau, D., Nigmatova, S., Fiebig, J., Gerdes, A., Janssen, R., and Fitzsimmons, K. E.: Central Asian modulation of Northern Hemisphere moisture transfer over the Late Cenozoic, Commun. Earth Environ., 2, 106, https://doi.org/10.1038/s43247-021-00173-z, 2021.
Puchol, N., Charreau, J., Blard, P. H., Lavé, J., Dominguez, S., Pik, R., Saint-Carlier, D., and Team, A.: Limited impact of Quaternary glaciations on denudation rates in Central Asia, Geol. Soc. Am. Bull., 129, 479–499, https://doi.org/10.1130/B31475.1, 2017.
Racano, S., Schildgen, T., Ballato, P., Yıldırım, C., and Wittmann, H.: Rock-uplift history of the Central Pontides from river-profile inversions and implications for development of the North Anatolian Fault, Earth Planet. Sc. Lett., 616, 118231, https://doi.org/10.1016/j.epsl.2023.118231, 2023.
Richter, F., Pearson, J., Vilkas, M., Heermance, R. V., Garzione, C. N., Cecil, M. R., Jepson, G., Moe, A., Xu, J., Liu, L., and Chen, J.: Growth of the southern Tian Shan-Pamir and its impact on central Asian climate, Geol. Soc. Am. Bull., 135, 1859–1878, https://doi.org/10.1130/B36471.1, 2022.
Rittner, M., Vermeesch, P., Carter, A., Bird, A., Stevens, T., Garzanti, E., Andò, S., Vezzoli, G., Dutt, R., Xu, Z., and Lu, H.: The provenance of Taklamakan desert sand, Earth Planet. Sc. Lett., 437, 127–137, https://doi.org/10.1016/j.epsl.2015.12.036, 2016.
Rohrmann, A., Kirby, E., and Schwanghart, W.: Accelerated Miocene incision along the Yangtze River driven by headward drainage basin expansion, Sci. Adv., 9, eadh1636, https://doi.org/10.1126/sciadv.adh1636, 2023.
Rolland, Y., Jourdon, A., Petit, C., Bellahsen, N., Loury, C., Sobel, E. R., and Glodny, J.: Thermochronology of the highest central Asian massifs (Khan Tengri - Pobedi, SE Kyrgyztan): Evidence for Late Miocene (ca. 8 Ma) reactivation of Permian faults and insights into building the Tian Shan, J. Asian Earth Sci., 200, 104466, https://doi.org/10.1016/j.jseaes.2020.104466, 2020.
Rudge, J. F., Roberts, G. G., White, N. J., and Richardson, C. N.: Uplift histories of Africa and Australia from linear inverse modeling of drainage inventories, J. Geophys. Res.-Earth, 120, 894–914, https://doi.org/10.1002/2014JF003297, 2015.
Schwanghart, W. and Kuhn, N. J.: TopoToolbox: A set of Matlab functions for topographic analysis, Environ. Modell. Softw., 25, 770–781, https://doi.org/10.1016/j.envsoft.2009.12.002, 2010.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014 (code available at: https://github.com/wschwanghart/topotoolbox.git, last access: 2 September 2024).
Schwanghart, W. and Scherler, D.: Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques, Earth Surf. Dynam., 5, 821–839, https://doi.org/10.5194/esurf-5-821-2017, 2017.
Schwanghart, W. and Scherler, D.: Divide mobility controls knickpoint migration on the Roan Plateau (Colorado, USA), Geology, 48, 698–702, https://doi.org/10.1130/G47054.1, 2020.
Seagren, E. G. and Schoenbohm, L. M.: Base Level and Lithologic Control of Drainage Reorganization in the Sierra de las Planchadas, NW Argentina, J. Geophys. Res.-Earth, 124, 1516–1539, https://doi.org/10.1029/2018JF004885, 2019.
Seagren, E. G., McMillan, M., and Schoenbohm, L. M.: Tectonic Control on Drainage Evolution in Broken Forelands: Examples From NW Argentina, Tectonics, 41, e2020TC006536, https://doi.org/10.1029/2020TC006536, 2022.
Shelef, E. and Goren, L.: The rate and extent of wind-gap migration regulated by tributary confluences and avulsions, Earth Surf. Dynam., 9, 687–700, https://doi.org/10.5194/esurf-9-687-2021, 2021.
Smith, A. G. G., Fox, M., Schwanghart, W., and Carter, A.: Comparing methods for calculating channel steepness index, Earth-Sci. Rev., 227, 103970, https://doi.org/10.1016/j.earscirev.2022.103970, 2022.
Sobel, E. R. and Dumitru, T. A.: Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision, J. Geophys. Res.-Sol. Ea., 102, 5043–5063, https://doi.org/10.1029/96jb03267, 1997.
Sobel, E. R., Hilley, G. E., and Strecker, M. R.: Formation of internally drained contractional basins by aridity-limited bedrock incision, J. Geophys. Res.-Sol. Ea., 108, 2344, https://doi.org/10.1029/2002JB001883, 2003.
Sobel, E. R., Chen, J., and Heermance, R.: Late Oligocene–Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: Implications for Neogene shortening rate variations, Earth Planet. Sc. Lett., 247, 70–81, https://doi.org/10.1016/j.epsl.2006.03.048, 2006a.
Sobel, E. R., Oskin, M., Burbank, D., and Mikolaichuk, A.: Exhumation of basement-cored uplifts: Example of the Kyrgyz Range quantified with apatite fission track thermochronolgy, Tectonics, 25, TC2008, https://doi.org/10.1029/2005TC001809, 2006b.
Stokes, M. F., Kim, D., Gallen, S. F., Benavides, E., Keck, B. P., Wood, J., Goldberg, S. L., Larsen, I. J., Mollish, J. M., Simmons, J. W., Near, T. J., and Perron, J. T.: Erosion of heterogeneous rock drives diversification of Appalachian fishes, Science, 380, 855–859, https://doi.org/10.1126/SCIENCE.ADD9791, 2023.
Streit, R. L., Burbank, D. W., Strecker, M. R., Alonso, R. N., Cottle, J. M., and Kylander-Clark, A. R. C.: Controls on intermontane basin filling, isolation and incision on the margin of the Puna Plateau, NW Argentina (∼ 23° S), Basin Res., 29, 131–155, https://doi.org/10.1111/bre.12141, 2017.
Stroeven, A. P., Hättestrand, C., Heyman, J., Kleman, J., and Morén, B. M.: Glacial geomorphology of the Tian Shan, J. Maps, 9, 505–512, https://doi.org/10.1080/17445647.2013.820879, 2013.
Struth, L., Babault, J., and Teixell, A.: Drainage reorganization during mountain building in the river system of the Eastern Cordillera of the Colombian Andes, Geomorphology, 250, 370–383, https://doi.org/10.1016/j.geomorph.2015.09.012, 2015.
Sun, J., Liu, W., Liu, Z., Deng, T., Windley, B. F., and Fu, B.: Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China, Palaeogeogr. Palaeocl., 485, 189–200, https://doi.org/10.1016/j.palaeo.2017.06.012, 2017.
Valla, P. G., van der Beek, P. A., and Lague, D.: Fluvial incision into bedrock: Insights from morphometric analysis and numerical modeling of gorges incising glacial hanging valleys (Western Alps, France), J. Geophys. Res.-Earth, 115, F02010, https://doi.org/10.1029/2008JF001079, 2010.
Viaplana-Muzas, M., Babault, J., Dominguez, S., Van Den Driessche, J., and Legrand, X.: Modelling of drainage dynamics influence on sediment routing system in a fold-and-thrust belt, Basin Res., 31, 290–310, https://doi.org/10.1111/bre.12321, 2019.
Wang, Q., Zhang, P. Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X., You, X., Niu, Z., Wu, J., Li, Y., Liu, J., Yang, Z., and Chen, Q.: Present-day crustal deformation in China constrained by global positioning system measurements, Science, 294, 574–577, https://doi.org/10.1126/science.1063647, 2001.
Watson, M. P., Hayward, A. B., Parkinson, D. N., and Zhang, Z. M.: Plate tectonic history, basin development and petroleum source rock deposition onshore China, Mar. Petrol. Geol., 4, 205–225, https://doi.org/10.1016/0264-8172(87)90045-6, 1987.
Whipple, K. X.: Bedrock Rivers And The Geomorphology of Active Orogens, Annu. Rev. Earth Pl. Sc., 32, 151–185, https://doi.org/10.1146/annurev.earth.32.101802.120356, 2004.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res.-Sol. Ea., 104, 17661–17674, https://doi.org/10.1029/1999JB900120, 1999.
Whipple, K. X., DiBiase, R. A., and Crosby, B. T.: Bedrock Rivers, in: Treatise on Geomorphology, vol. 9, Elsevier, 550–573, https://doi.org/10.1016/B978-0-12-374739-6.00254-2, 2013.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D.: Tectonics from topography: Procedures, promise, and pitfalls, in: Tectonics, Climate, and Landscape Evolution, Geological Society of America Spec. Publ., 398, 55–74, https://doi.org/10.1130/2006.2398(04), 2006.
Wolf, S. G., Huismans, R. S., Braun, J., and Yuan, X.: Topography of mountain belts controlled by rheology and surface processes, Nature, 606, 516–521, https://doi.org/10.1038/s41586-022-04700-6, 2022.
Wu, C., Zheng, W., Zhang, P., Zhang, Z., Jia, Q., Yu, J., Zhang, H., Yao, Y., Liu, J., Han, G., and Chen, J.: Oblique Thrust of the Maidan Fault and Late Quaternary Tectonic Deformation in the Southwestern Tian Shan, Northwestern China, Tectonics, 38, 2625–2645, https://doi.org/10.1029/2018TC005248, 2019.
Xiao, W., Windley, B. F., Allen, M. B., and Han, C.: Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage, Gondwana Res., 23, 1316–1341, https://doi.org/10.1016/j.gr.2012.01.012, 2013.
Yang, S., Li, J., and Wang, Q.: The deformation pattern and fault rate in the Tianshan Mountains inferred from GPS observations, Sci. China Ser. D, 51, 1064–1080, https://doi.org/10.1007/s11430-008-0090-8, 2008.
Yanites, B. J., Ehlers, T. A., Becker, J. K., Schnellmann, M., and Heuberger, S.: High magnitude and rapid incision from river capture: Rhine River, Switzerland, J. Geophys. Res.-Earth, 118, 1060–1084, https://doi.org/10.1002/jgrf.20056, 2013.
Yin, A., Nie, S., Craig, P., Harrison, T. M., Ryerson, F. J., Xianglin, Q., and Geng, Y.: Late Cenozoic tectonic evolution of the southern Chinese Tian Shan, Tectonics, 17, 1–27, https://doi.org/10.1029/97TC03140, 1998.
Zachos, J., Pagani, H., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zhukov, Y. V., Zakharov, I. L., Berezansky, A. V., and Izraileva, R. M.: Geological map of Kyrgyz Republic, scale 1:500 000, Agency of Geology and Mineral Resources of the Kyrgyz Republic, Bishkek, Kyrgyzstan, 2008.
Short summary
We choose the large Saryjaz river from South Tian Shan to analyse topographic and fluvial metrics. By quantifying the spatial distribution of major metrics and comparing with modelling patterns, we suggest that the observed transience was triggered by a big capture event during the Plio-Pleistocene and potentially affected by both tectonic and climate factors. This conclusion underlines the importance of local contingent factors in driving drainage development.
We choose the large Saryjaz river from South Tian Shan to analyse topographic and fluvial...