Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.928 IF 3.928
  • IF 5-year value: 3.864 IF 5-year
    3.864
  • CiteScore value: 6.2 CiteScore
    6.2
  • SNIP value: 1.469 SNIP 1.469
  • IPP value: 4.21 IPP 4.21
  • SJR value: 1.666 SJR 1.666
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 21 Scimago H
    index 21
  • h5-index value: 23 h5-index 23
ESurf | Articles | Volume 6, issue 3
Earth Surf. Dynam., 6, 637–649, 2018
https://doi.org/10.5194/esurf-6-637-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Surf. Dynam., 6, 637–649, 2018
https://doi.org/10.5194/esurf-6-637-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 03 Aug 2018

Research article | 03 Aug 2018

Mechanical state of gravel soil in mobilization of rainfall-induced landslides in the Wenchuan seismic area, Sichuan province, China

Liping Liao et al.

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Parameterization of river incision models requires accounting for environmental heterogeneity: insights from the tropical Andes
Benjamin Campforts, Veerle Vanacker, Frédéric Herman, Matthias Vanmaercke, Wolfgang Schwanghart, Gustavo E. Tenorio, Patrick Willems, and Gerard Govers
Earth Surf. Dynam., 8, 447–470, https://doi.org/10.5194/esurf-8-447-2020,https://doi.org/10.5194/esurf-8-447-2020, 2020
Short summary
Measuring river planform changes from remotely sensed data – a Monte Carlo approach to assessing the impact of spatially variable error
Timothée Jautzy, Pierre-Alexis Herrault, Valentin Chardon, Laurent Schmitt, and Gilles Rixhon
Earth Surf. Dynam., 8, 471–484, https://doi.org/10.5194/esurf-8-471-2020,https://doi.org/10.5194/esurf-8-471-2020, 2020
Short summary
Entrainment and suspension of sand and gravel
Jan de Leeuw, Michael P. Lamb, Gary Parker, Andrew J. Moodie, Daniel Haught, Jeremy G. Venditti, and Jeffrey A. Nittrouer
Earth Surf. Dynam., 8, 485–504, https://doi.org/10.5194/esurf-8-485-2020,https://doi.org/10.5194/esurf-8-485-2020, 2020
Morphological evolution of bifurcations in tide-influenced deltas
Arya P. Iwantoro, Maarten van der Vegt, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 413–429, https://doi.org/10.5194/esurf-8-413-2020,https://doi.org/10.5194/esurf-8-413-2020, 2020
Short summary
Short communication: Landlab v2.0: a software package for Earth surface dynamics
Katherine R. Barnhart, Eric W. H. Hutton, Gregory E. Tucker, Nicole M. Gasparini, Erkan Istanbulluoglu, Daniel E. J. Hobley, Nathan J. Lyons, Margaux Mouchene, Sai Siddhartha Nudurupati, Jordan M. Adams, and Christina Bandaragoda
Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020,https://doi.org/10.5194/esurf-8-379-2020, 2020
Short summary

Cited articles

Been, K. and Jefferies, M. G.: A state parameter for sands, Geotechnique, 35, 99–112, 1985. 
Casagrande, A: Characteristics of cohesionless soils affecting the stability of slopes and earth fills, Journal of the Boston Society of Civil Engineers, 23, 13–32, 1936. 
Chen, N. S., Cui, P., Wang, X. Y., and Di, B. F.: Testing study on strength reduction of gravelly soil in triggering area of debris flow under earthquake, Chinese Journal of Rock Mechanics and Engineering, 23, 2743–2747, 2004 (in Chinese). 
Chen, N. S., Zhou, W., Yang, C. L., Hu, G. S., Gao, Y. C., and Han, D.: The processes and mechanism of failure and debris flow initiation for gravel soil with different clay content, Geomorphology, 121, 222–230, https://doi.org/10.1016/j.geomorph.2010.04.017, 2010. 
Chen, N. S., Zhu, Y. H., Huang, Q., Lqbal, J., Deng, M. F., and He, N.: Mechanisms involved in triggering debris flows within a cohesive gravel soil mass on a slope: a case in SW China, J. Mt. Sci., 14, 611–620, https://doi.org/10.1007/s11629-016-3882-x, 2017. 
Publications Copernicus
Download
Short summary
In this paper, artificial model tests were used to observe the changes of soil moisture content and pore water pressure, as well as macroscopic and microscopic phenomena of gravel soil. In addition, the mathematical formula of the critical state was derived from the triaxial test data. Finally, the mechanical states of gravel soil were determined. In the process of landslide initiation, dilatation and contraction were two types of gravel soil state, but dilatation was dominant.
In this paper, artificial model tests were used to observe the changes of soil moisture content...
Citation