Articles | Volume 6, issue 3
https://doi.org/10.5194/esurf-6-779-2018
https://doi.org/10.5194/esurf-6-779-2018
Research article
 | 
25 Sep 2018
Research article |  | 25 Sep 2018

Scaling and similarity of a stream-power incision and linear diffusion landscape evolution model

Nikos Theodoratos, Hansjörg Seybold, and James W. Kirchner

Related authors

Graphically interpreting how incision thresholds influence topographic and scaling properties of modeled landscapes
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 9, 1545–1561, https://doi.org/10.5194/esurf-9-1545-2021,https://doi.org/10.5194/esurf-9-1545-2021, 2021
Short summary
Dimensional analysis of a landscape evolution model with incision threshold
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 8, 505–526, https://doi.org/10.5194/esurf-8-505-2020,https://doi.org/10.5194/esurf-8-505-2020, 2020
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
Channel concavity controls planform complexity of branching drainage networks
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024,https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary
Knickpoints and fixed points: the evolution of fluvial morphology under the combined effect of fault uplift and dam obstruction on a soft bedrock river
Hung-En Chen, Yen-Yu Chiu, Chih-Yuan Cheng, and Su-Chin Chen
Earth Surf. Dynam., 12, 1329–1346, https://doi.org/10.5194/esurf-12-1329-2024,https://doi.org/10.5194/esurf-12-1329-2024, 2024
Short summary
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024,https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short Communication: Numerically simulated time to steady state is not a reliable measure of landscape response time
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024,https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary

Cited articles

Balluffi, R. W., Allen, S., and Carter, W. C.: Kinetics of materials, John Wiley & Sons, New Jersey, USA, 2005. 
Bear, J. and Cheng, A. H.-D.: Modeling Groundwater Flow and Contaminant Transport, in: Theory and Applications of Transport in Porous Media, Vol. 23, edited by: Bear, J., Springer Netherlands, Dordrecht, Netherlands, 2010. 
Braun, J. and Sambridge, M.: Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization, Basin Res., 9, 27–52, 1997. 
Clubb, F. J., Mudd, S. M., Milodowski, D. T., Hurst, M. D., and Slater, L. J.: Objective extraction of channel heads from high-resolution topographic data, Water Resour. Res., 50, 4283–4304, https://doi.org/10.1002/2013WR015167, 2014. 
Clubb, F. J., Mudd, S. M., Attal, M., Milodowski, D. T., and Grieve, S. W. D.: The relationship between drainage density, erosion rate, and hilltop curvature: Implications for sediment transport processes, J. Geophys. Res.-Earth Surf., 121, 1724–1745, https://doi.org/10.1002/2015JF003747, 2016. 
Download
Short summary
We perform dimensional analysis on a frequently used landscape evolution model (LEM). Defining characteristic scales in a novel way, we significantly simplify the LEM and develop an efficient numerical modeling approach. Our characteristic scales are physically meaningful; they quantify competitions between landscape-forming processes and are related to salient properties of landscape topography. Dimensional analyses of other LEMs may benefit from our approach in defining characteristic scales.