Articles | Volume 7, issue 2
https://doi.org/10.5194/esurf-7-505-2019
https://doi.org/10.5194/esurf-7-505-2019
Research article
 | 
03 Jun 2019
Research article |  | 03 Jun 2019

Can the growth of deltaic shorelines be unstable?

Meng Zhao, Gerard Salter, Vaughan R. Voller, and Shuwang Li

Related authors

Testing floc settling velocity models in rivers and freshwater wetlands
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024,https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
A control volume finite-element model for predicting the morphology of cohesive-frictional debris flow deposits
Tzu-Yin Kasha Chen, Ying-Chen Wu, Chi-Yao Hung, Hervé Capart, and Vaughan R. Voller
Earth Surf. Dynam., 11, 325–342, https://doi.org/10.5194/esurf-11-325-2023,https://doi.org/10.5194/esurf-11-325-2023, 2023
Short summary
How does the downstream boundary affect avulsion dynamics in a laboratory bifurcation?
Gerard Salter, Vaughan R. Voller, and Chris Paola
Earth Surf. Dynam., 7, 911–927, https://doi.org/10.5194/esurf-7-911-2019,https://doi.org/10.5194/esurf-7-911-2019, 2019
Short summary
Self-similar growth of a bimodal laboratory fan
Pauline Delorme, Vaughan Voller, Chris Paola, Olivier Devauchelle, Éric Lajeunesse, Laurie Barrier, and François Métivier
Earth Surf. Dynam., 5, 239–252, https://doi.org/10.5194/esurf-5-239-2017,https://doi.org/10.5194/esurf-5-239-2017, 2017
Short summary
Experimental migration of knickpoints: influence of style of base-level fall and bed lithology
J.-L. Grimaud, C. Paola, and V. Voller
Earth Surf. Dynam., 4, 11–23, https://doi.org/10.5194/esurf-4-11-2016,https://doi.org/10.5194/esurf-4-11-2016, 2016
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
Short Communication: Numerically simulated time to steady state is not a reliable measure of landscape response time
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024,https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
Drainage rearrangement in an intra-continental mountain belt: a case study from the central South Tian Shan, Kyrgyzstan
Lingxiao Gong, Peter van der Beek, Taylor F. Schildgen, Edward R. Sobel, Simone Racano, Apolline Mariotti, and Fergus McNab
Earth Surf. Dynam., 12, 973–994, https://doi.org/10.5194/esurf-12-973-2024,https://doi.org/10.5194/esurf-12-973-2024, 2024
Short summary
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for Landscape Evolution Models
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Guillaume Adrien Bernard
EGUsphere, https://doi.org/10.5194/egusphere-2024-1239,https://doi.org/10.5194/egusphere-2024-1239, 2024
Short summary
Channel concavity controls plan-form complexity of branching drainage networks
Liran Goren and Eitan Shelef
EGUsphere, https://doi.org/10.5194/egusphere-2024-808,https://doi.org/10.5194/egusphere-2024-808, 2024
Short summary

Cited articles

Ashton, A. D. and Murray, A. B.: High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes, J. Geophys. Res., 111, F04011, https://doi.org/10.1029/2005JF000422, 2006. a
Baumgardner, S.: Quantifying Galloway: Fluvial, Tidal and Wave Influence on Experimental and Field Deltas, PhD thesis, University of Minnesota, 2016. a
Capart, H., Bellal, M., and Young, D.-L.: Self-similar evolution of semi-infinite alluvial channels with moving boundaries, J. Sediment. Res., 77, 13–22, 2007. a
Crank, J.: Free and Moving Boundary Problems, Clarendon Press, Oxford, UK, 1984. a
Galloway, W. D.: Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems, in: Deltas, Models for Exploration, edited by: Broussard, M. L., Houston Geological Society, Houston, Texas, 87–98, 1975. a
Download
Short summary
Typically, we think of a shoreline growing with a smooth line separating the land and the water. If the growth is unstable, however, the land–water front will exhibit a roughness that grows with time. Here we ask whether the growth of deltaic shorelines cab be unstable. Through mathematical analysis we show that growth is unstable when the shoreline is building onto an adverse slope. The length scale of the unstable signal in such a case, however, might be obscured by other geomorphic processes.