Articles | Volume 8, issue 2
https://doi.org/10.5194/esurf-8-367-2020
https://doi.org/10.5194/esurf-8-367-2020
Research article
 | 
26 May 2020
Research article |  | 26 May 2020

Rivers as linear elements in landform evolution models

Stefan Hergarten

Related authors

Old orogen – young topography: lithological contrasts controlling erosion and relief formation in the Bohemian Massif
Jörg Christian Robl, Fabian Dremel, Kurt Stüwe, Stefan Hergarten, Christoph von Hagke, and Derek Fabel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3256,https://doi.org/10.5194/egusphere-2024-3256, 2024
Short summary
A simple model for faceted topographies at normal faults based on an extended stream-power law
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024,https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
MinVoellmy v1: a lightweight model for simulating rapid mass movements based on a modified Voellmy rheology
Stefan Hergarten
Geosci. Model Dev., 17, 781–794, https://doi.org/10.5194/gmd-17-781-2024,https://doi.org/10.5194/gmd-17-781-2024, 2024
Short summary
Scaling between volume and runout of rock avalanches explained by a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 219–229, https://doi.org/10.5194/esurf-12-219-2024,https://doi.org/10.5194/esurf-12-219-2024, 2024
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
Channel concavity controls planform complexity of branching drainage networks
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024,https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary
Knickpoints and fixed points: the evolution of fluvial morphology under the combined effect of fault uplift and dam obstruction on a soft bedrock river
Hung-En Chen, Yen-Yu Chiu, Chih-Yuan Cheng, and Su-Chin Chen
Earth Surf. Dynam., 12, 1329–1346, https://doi.org/10.5194/esurf-12-1329-2024,https://doi.org/10.5194/esurf-12-1329-2024, 2024
Short summary
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024,https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short Communication: Numerically simulated time to steady state is not a reliable measure of landscape response time
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024,https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary

Cited articles

Andrews, D. J. and Bucknam, R. C.: Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res., 92, 12857–12867, https://doi.org/10.1029/JB092iB12p12857, 1987. a
Campforts, B., Schwanghart, W., and Govers, G.: Accurate simulation of transient landscape evolution by eliminating numerical diffusion: the TTLEM 1.0 model, Earth Surf. Dynam., 5, 47–66, https://doi.org/10.5194/esurf-5-47-2017, 2017. a
Culling, W.: Analytical theory of erosion, J. Geol., 68, 336–344, https://doi.org/10.1086/626663, 1960. a
Duvall, A. R. and Tucker, G. E.: Dynamic ridges and valleys in a strike-slip environment, J. Geophys. Res.-Earth, 120, 2016–2026, https://doi.org/10.1002/2015JF003618, 2015. a
Ferrier, K. L., Perron, J. T., Mukhopadhyay, S., Rosener, M., Stock, J. D., Huppert, K. L., and Slosberg, M.: Covariation of climate and long-term erosion rates across a steep rainfall gradient on the Hawaiian island of Kaua´i, GSA Bull., 125, 1146–1163, https://doi.org/10.1130/B30726.1, 2013. a
Download
Short summary
Models of fluvial erosion have a long history in landform evolution modeling. Interactions between rivers and processes acting at hillslopes (e.g., landslides) are receiving growing interest in this context. While present-day computer capacities allow for applying such coupled models, there is still a scaling problem when considering rivers to be linear elements on a topography. Based on a reinterpretation of old empirical results, this study presents a new approach to overcome this problem.