Articles | Volume 8, issue 2
https://doi.org/10.5194/esurf-8-431-2020
https://doi.org/10.5194/esurf-8-431-2020
Research article
 | 
02 Jun 2020
Research article |  | 02 Jun 2020

Computing water flow through complex landscapes – Part 2: Finding hierarchies in depressions and morphological segmentations

Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert

Related authors

The Water Table Model (WTM) v2.0.1: Coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-131,https://doi.org/10.5194/gmd-2024-131, 2024
Revised manuscript under review for GMD
Short summary
Computing water flow through complex landscapes – Part 3: Fill–Spill–Merge: flow routing in depression hierarchies
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 9, 105–121, https://doi.org/10.5194/esurf-9-105-2021,https://doi.org/10.5194/esurf-9-105-2021, 2021
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024,https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short Communication: Numerically simulated time to steady state is not a reliable measure of landscape response time
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024,https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
Drainage rearrangement in an intra-continental mountain belt: a case study from the central South Tian Shan, Kyrgyzstan
Lingxiao Gong, Peter van der Beek, Taylor F. Schildgen, Edward R. Sobel, Simone Racano, Apolline Mariotti, and Fergus McNab
Earth Surf. Dynam., 12, 973–994, https://doi.org/10.5194/esurf-12-973-2024,https://doi.org/10.5194/esurf-12-973-2024, 2024
Short summary
Channel concavity controls plan-form complexity of branching drainage networks
Liran Goren and Eitan Shelef
EGUsphere, https://doi.org/10.5194/egusphere-2024-808,https://doi.org/10.5194/egusphere-2024-808, 2024
Short summary

Cited articles

Akiba, T.: Software: Radix-Heap, Commit f54eba0a19782c67a9779c28263a7ce680995eda, available at: https://github.com/iwiwi/radix-heap (last access: 20 May 2020), 2015. a, b
Arnold, N.: A new approach for dealing with depressions in digital elevation models when calculating flow accumulation values, Prog. Phys. Geog., 34, 781–809, https://doi.org/10.1177/0309133310384542, 2010. a, b
Barnes, R.: Parallel Priority-Flood Depression Filling For Trillion Cell Digital Elevation Models On Desktops Or Clusters, Comput. Geosci., 96, 56–68, https://doi.org/10.1016/j.cageo.2016.07.001, 2016a. a
Barnes, R.: RichDEM: Terrain Analysis Software, Zenodo, https://doi.org/10.5281/zenodo.1295618, 2016b. a
Barnes, R. and Callaghan, K.: Depression Hierarchy Source Code, Zenodo, https://doi.org/10.5281/zenodo.3238558, 2019. a, b, c
Short summary
Maps of elevation are used to help predict the flow of water so we can better understand landslides, floods, and global climate change. However, modeling the flow of water is difficult when elevation maps include swamps, lakes, and other depressions. This paper explains a new method that overcomes these difficulties, allowing models to run faster and more accurately.