Articles | Volume 8, issue 2
https://doi.org/10.5194/esurf-8-431-2020
https://doi.org/10.5194/esurf-8-431-2020
Research article
 | 
02 Jun 2020
Research article |  | 02 Jun 2020

Computing water flow through complex landscapes – Part 2: Finding hierarchies in depressions and morphological segmentations

Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert

Related authors

The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025,https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Computing water flow through complex landscapes – Part 3: Fill–Spill–Merge: flow routing in depression hierarchies
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 9, 105–121, https://doi.org/10.5194/esurf-9-105-2021,https://doi.org/10.5194/esurf-9-105-2021, 2021
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
A fractal framework for channel–hillslope coupling
Benjamin Kargère, José Constantine, Tristram Hales, Stuart Grieve, and Stewart Johnson
Earth Surf. Dynam., 13, 403–415, https://doi.org/10.5194/esurf-13-403-2025,https://doi.org/10.5194/esurf-13-403-2025, 2025
Short summary
Hillslope diffusion and channel steepness in landscape evolution models
David G. Litwin, Luca C. Malatesta, and Leonard S. Sklar
Earth Surf. Dynam., 13, 277–293, https://doi.org/10.5194/esurf-13-277-2025,https://doi.org/10.5194/esurf-13-277-2025, 2025
Short summary
Modeling memory in gravel-bed rivers: A flow history-dependent relation for evolving thresholds of motion
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3250,https://doi.org/10.5194/egusphere-2024-3250, 2024
Short summary
Old orogen – young topography: lithological contrasts controlling erosion and relief formation in the Bohemian Massif
Jörg Christian Robl, Fabian Dremel, Kurt Stüwe, Stefan Hergarten, Christoph von Hagke, and Derek Fabel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3256,https://doi.org/10.5194/egusphere-2024-3256, 2024
Short summary
Channel concavity controls planform complexity of branching drainage networks
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024,https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary

Cited articles

Akiba, T.: Software: Radix-Heap, Commit f54eba0a19782c67a9779c28263a7ce680995eda, available at: https://github.com/iwiwi/radix-heap (last access: 20 May 2020), 2015. a, b
Arnold, N.: A new approach for dealing with depressions in digital elevation models when calculating flow accumulation values, Prog. Phys. Geog., 34, 781–809, https://doi.org/10.1177/0309133310384542, 2010. a, b
Barnes, R.: Parallel Priority-Flood Depression Filling For Trillion Cell Digital Elevation Models On Desktops Or Clusters, Comput. Geosci., 96, 56–68, https://doi.org/10.1016/j.cageo.2016.07.001, 2016a. a
Barnes, R.: RichDEM: Terrain Analysis Software, Zenodo, https://doi.org/10.5281/zenodo.1295618, 2016b. a
Barnes, R. and Callaghan, K.: Depression Hierarchy Source Code, Zenodo, https://doi.org/10.5281/zenodo.3238558, 2019. a, b, c
Short summary
Maps of elevation are used to help predict the flow of water so we can better understand landslides, floods, and global climate change. However, modeling the flow of water is difficult when elevation maps include swamps, lakes, and other depressions. This paper explains a new method that overcomes these difficulties, allowing models to run faster and more accurately.
Share