Articles | Volume 11, issue 6
https://doi.org/10.5194/esurf-11-1117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-1117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Steady-state forms of channel profiles shaped by debris flow and fluvial processes
Luke A. McGuire
CORRESPONDING AUTHOR
Department of Geosciences, The University of Arizona, Gould-Simpson Building, 1040 East Fourth Street, Tucson, Arizona 85721, USA
Scott W. McCoy
Department of Geological Sciences and Engineering, University of Nevada, Reno, Nevada 89557, USA
Odin Marc
Géosciences Environnement Toulouse (GET), UMR 5563, CNRS/IRD/CNES/UPS, Observatoire Midi-Pyrénées, Toulouse, France
William Struble
Department of Geosciences, The University of Arizona, Gould-Simpson Building, 1040 East Fourth Street, Tucson, Arizona 85721, USA
Katherine R. Barnhart
U.S. Geological Survey, P.O. Box 25046, MS 966, Denver, Colorado 80225, USA
Related authors
Tao Liu, Luke A. McGuire, Ann M. Youberg, Charles J. Abolt, and Adam L. Atchley
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-151, https://doi.org/10.5194/nhess-2024-151, 2024
Preprint under review for NHESS
Short summary
Short summary
After a fire, soil infiltration decreases, increasing flash flood risks, worsened by intense rainfall from climate change. Using data from a burned watershed in Arizona and a hydrological model, we examined postfire soil changes under medium and high emissions scenarios. Results showed soil infiltration increased sixfold from the first to third postfire year. Both scenarios suggest that rainfall intensification will extend high flood risks after fires by late century.
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024, https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Short summary
Fire can dramatically increase the risk of debris flows to downstream communities with little warning, but hazard assessments have not traditionally included estimates of inundation. We unify models developed by the scientific community to create probabilistic estimates of inundation area in response to rainfall at forecast lead times (≥ 24 h) needed for decision-making. This work takes an initial step toward a near-real-time postfire debris-flow inundation hazard assessment product.
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
EGUsphere, https://doi.org/10.5194/egusphere-2024-1153, https://doi.org/10.5194/egusphere-2024-1153, 2024
Short summary
Short summary
On the gently sloping landscapes next to mountain fronts, junction angles tend to be lower (more acute), while in bedrock landscapes where the initial landscape or tectonic forcing is likely more spatially variable, junction angles tend to be larger (more obtuse). We demonstrate this using an analysis of ~20 million junction angles for the U.S.A., augmented by analyses of the Loess Plateau, China, and synthetic landscapes.
Luke A. McGuire, Francis K. Rengers, Ann M. Youberg, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Ryan Porter
Nat. Hazards Earth Syst. Sci., 24, 1357–1379, https://doi.org/10.5194/nhess-24-1357-2024, https://doi.org/10.5194/nhess-24-1357-2024, 2024
Short summary
Short summary
Runoff and erosion increase after fire, leading to a greater likelihood of floods and debris flows. We monitored debris flow activity following a fire in western New Mexico, USA, and observed 16 debris flows over a <2-year monitoring period. Rainstorms with recurrence intervals of approximately 1 year were sufficient to initiate debris flows. All debris flows initiated during the first several months following the fire, indicating a rapid decrease in debris flow susceptibility over time.
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023, https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary
Short summary
Debris flows often occur after wildfires. These debris flows move water, sediment, and wood. The wood can get stuck in channels, creating a dam that holds boulders, cobbles, sand, and muddy material. We investigated how the channel width and wood length influenced how much sediment is stored. We also used a series of equations to back calculate the debris flow speed using the breaking threshold of wood. These data will help improve models and provide insight into future field investigations.
Tao Liu, Luke A. McGuire, Nina Oakley, and Forest Cannon
Nat. Hazards Earth Syst. Sci., 22, 361–376, https://doi.org/10.5194/nhess-22-361-2022, https://doi.org/10.5194/nhess-22-361-2022, 2022
Short summary
Short summary
A well-constrained rainfall-runoff model forced by radar-derived precipitation is used to define rainfall intensity-duration (ID) thresholds for flash floods. The rainfall ID doubles in 5 years after a severe wildfire in a watershed in southern California, USA. Rainfall ID performs stably well for intense pulses of rainfall over durations of 30-60 minutes that cover at least 15%-25% of the watershed. This finding could help issuing flash flood warnings based on radar-derived precipitation.
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024, https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Short summary
The time it takes for a landscape to adjust to new environmental conditions is critical for understanding the impacts of past and future environmental changes. We used different computational models and methods and found that predicted times for a landscape to reach a stable condition vary greatly. Our results illustrate that reporting how timescales are measured is important. Modelers should ensure that the measurement technique addresses the question.
Tao Liu, Luke A. McGuire, Ann M. Youberg, Charles J. Abolt, and Adam L. Atchley
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-151, https://doi.org/10.5194/nhess-2024-151, 2024
Preprint under review for NHESS
Short summary
Short summary
After a fire, soil infiltration decreases, increasing flash flood risks, worsened by intense rainfall from climate change. Using data from a burned watershed in Arizona and a hydrological model, we examined postfire soil changes under medium and high emissions scenarios. Results showed soil infiltration increased sixfold from the first to third postfire year. Both scenarios suggest that rainfall intensification will extend high flood risks after fires by late century.
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024, https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Short summary
Fluvial sediment fluxes increased dramatically in Taiwan during Typhoon Morakot in 2009, which produced some of the heaviest landsliding on record. We analyzed fluvial discharge and suspended sediment concentration data at 87 gauging stations across Taiwan to quantify fluvial sediment responses since Morakot. In basins heavily impacted by landsliding, rating curve coefficients sharply increased during Morakot and then declined exponentially with a characteristic decay time of <10 years.
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024, https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Short summary
Fire can dramatically increase the risk of debris flows to downstream communities with little warning, but hazard assessments have not traditionally included estimates of inundation. We unify models developed by the scientific community to create probabilistic estimates of inundation area in response to rainfall at forecast lead times (≥ 24 h) needed for decision-making. This work takes an initial step toward a near-real-time postfire debris-flow inundation hazard assessment product.
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024, https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Short summary
Every year the U.S. Geological Survey produces 50–100 postfire debris-flow hazard assessments using models for debris-flow likelihood and volume. To refine these models they must be tested with datasets that clearly document rainfall, debris-flow response, and debris-flow volume. These datasets are difficult to obtain, but this study developed and analyzed a postfire dataset with more than 100 postfire storm responses over a 2-year period. We also proposed ways to improve these models.
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 24, 1459–1483, https://doi.org/10.5194/nhess-24-1459-2024, https://doi.org/10.5194/nhess-24-1459-2024, 2024
Short summary
Short summary
Debris flows are a type of fast-moving landslide that start from shallow landslides or during intense rain. Infrastructure located downstream of watersheds susceptible to debris flows may be damaged should a debris flow reach them. We present and evaluate an approach to forecast building damage caused by debris flows. We test three alternative models for simulating the motion of debris flows and find that only one can forecast the correct number and spatial pattern of damaged buildings.
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
EGUsphere, https://doi.org/10.5194/egusphere-2024-1153, https://doi.org/10.5194/egusphere-2024-1153, 2024
Short summary
Short summary
On the gently sloping landscapes next to mountain fronts, junction angles tend to be lower (more acute), while in bedrock landscapes where the initial landscape or tectonic forcing is likely more spatially variable, junction angles tend to be larger (more obtuse). We demonstrate this using an analysis of ~20 million junction angles for the U.S.A., augmented by analyses of the Loess Plateau, China, and synthetic landscapes.
Luke A. McGuire, Francis K. Rengers, Ann M. Youberg, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Ryan Porter
Nat. Hazards Earth Syst. Sci., 24, 1357–1379, https://doi.org/10.5194/nhess-24-1357-2024, https://doi.org/10.5194/nhess-24-1357-2024, 2024
Short summary
Short summary
Runoff and erosion increase after fire, leading to a greater likelihood of floods and debris flows. We monitored debris flow activity following a fire in western New Mexico, USA, and observed 16 debris flows over a <2-year monitoring period. Rainstorms with recurrence intervals of approximately 1 year were sufficient to initiate debris flows. All debris flows initiated during the first several months following the fire, indicating a rapid decrease in debris flow susceptibility over time.
Greg Balco, Alan J. Hidy, William T. Struble, and Joshua J. Roering
Geochronology, 6, 71–76, https://doi.org/10.5194/gchron-6-71-2024, https://doi.org/10.5194/gchron-6-71-2024, 2024
Short summary
Short summary
We describe a new method of reconstructing the long-term, pre-observational frequency and/or intensity of wildfires in forested landscapes using trace concentrations of the noble gases helium and neon that are formed in soil mineral grains by cosmic-ray bombardment of the Earth's surface.
Lucas Zeller, Daniel McGrath, Scott W. McCoy, and Jonathan Jacquet
The Cryosphere, 18, 525–541, https://doi.org/10.5194/tc-18-525-2024, https://doi.org/10.5194/tc-18-525-2024, 2024
Short summary
Short summary
In this study we developed methods for automatically identifying supraglacial lakes in multiple satellite imagery sources for eight glaciers in Nepal. We identified a substantial seasonal variability in lake area, which was as large as the variability seen across entire decades. These complex patterns are not captured in existing regional-scale datasets. Our findings show that this seasonal variability must be accounted for in order to interpret long-term changes in debris-covered glaciers.
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023, https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary
Short summary
Debris flows often occur after wildfires. These debris flows move water, sediment, and wood. The wood can get stuck in channels, creating a dam that holds boulders, cobbles, sand, and muddy material. We investigated how the channel width and wood length influenced how much sediment is stored. We also used a series of equations to back calculate the debris flow speed using the breaking threshold of wood. These data will help improve models and provide insight into future field investigations.
Katy Burrows, Odin Marc, and Dominique Remy
Nat. Hazards Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/nhess-22-2637-2022, https://doi.org/10.5194/nhess-22-2637-2022, 2022
Short summary
Short summary
The locations of triggered landslides following a rainfall event can be identified in optical satellite images. However cloud cover associated with the rainfall means that these images cannot be used to identify landslide timing. Timings of landslides triggered during long rainfall events are often unknown. Here we present methods of using Sentinel-1 satellite radar data, acquired every 12 d globally in all weather conditions, to better constrain the timings of rainfall-triggered landslides.
Robert Emberson, Dalia B. Kirschbaum, Pukar Amatya, Hakan Tanyas, and Odin Marc
Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, https://doi.org/10.5194/nhess-22-1129-2022, 2022
Short summary
Short summary
Understanding where landslides occur in mountainous areas is critical to support hazard analysis as well as understand landscape evolution. In this study, we present a large compilation of inventories of landslides triggered by rainfall, including several that are described here for the first time. We analyze the topographic characteristics of the landslides, finding consistent relationships for landslide source and deposition areas, despite differences in the inventories' locations.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Tao Liu, Luke A. McGuire, Nina Oakley, and Forest Cannon
Nat. Hazards Earth Syst. Sci., 22, 361–376, https://doi.org/10.5194/nhess-22-361-2022, https://doi.org/10.5194/nhess-22-361-2022, 2022
Short summary
Short summary
A well-constrained rainfall-runoff model forced by radar-derived precipitation is used to define rainfall intensity-duration (ID) thresholds for flash floods. The rainfall ID doubles in 5 years after a severe wildfire in a watershed in southern California, USA. Rainfall ID performs stably well for intense pulses of rainfall over durations of 30-60 minutes that cover at least 15%-25% of the watershed. This finding could help issuing flash flood warnings based on radar-derived precipitation.
Brianna Rick, Daniel McGrath, William Armstrong, and Scott W. McCoy
The Cryosphere, 16, 297–314, https://doi.org/10.5194/tc-16-297-2022, https://doi.org/10.5194/tc-16-297-2022, 2022
Short summary
Short summary
Glacial lakes impact societies as both resources and hazards. Lakes form, grow, and drain as glaciers thin and retreat, and understanding lake evolution is a critical first step in assessing their hazard potential. We map glacial lakes in Alaska between 1984 and 2019. Overall, lakes grew in number and area, though lakes with different damming material (ice, moraine, bedrock) behaved differently. Namely, ice-dammed lakes decreased in number and area, a trend lost if dam type is not considered.
William T. Struble and Joshua J. Roering
Earth Surf. Dynam., 9, 1279–1300, https://doi.org/10.5194/esurf-9-1279-2021, https://doi.org/10.5194/esurf-9-1279-2021, 2021
Short summary
Short summary
We used a mathematical technique known as a wavelet transform to calculate the curvature of hilltops in western Oregon, which we used to estimate erosion rate. We find that this technique operates over 1000 times faster than other techniques and produces accurate erosion rates. We additionally built artificial hillslopes to test the accuracy of curvature measurement methods. We find that at fast erosion rates, curvature is underestimated, raising questions of measurement accuracy elsewhere.
Odin Marc, Jens M. Turowski, and Patrick Meunier
Earth Surf. Dynam., 9, 995–1011, https://doi.org/10.5194/esurf-9-995-2021, https://doi.org/10.5194/esurf-9-995-2021, 2021
Short summary
Short summary
The size of grains delivered to rivers is an essential parameter for understanding erosion and sediment transport and their related hazards. In mountains, landslides deliver these rock fragments, but few studies have analyzed the landslide properties that control the resulting sizes. We present measurements on 17 landslides from Taiwan and show that their grain sizes depend on rock strength, landslide depth and drop height, thereby validating and updating a previous theory on fragmentation.
Katherine R. Barnhart, Eric W. H. Hutton, Gregory E. Tucker, Nicole M. Gasparini, Erkan Istanbulluoglu, Daniel E. J. Hobley, Nathan J. Lyons, Margaux Mouchene, Sai Siddhartha Nudurupati, Jordan M. Adams, and Christina Bandaragoda
Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, https://doi.org/10.5194/esurf-8-379-2020, 2020
Short summary
Short summary
Landlab is a Python package to support the creation of numerical models in Earth surface dynamics. Since the release of the 1.0 version in 2017, Landlab has grown and evolved: it contains 31 new process components, a refactored model grid, and additional utilities. This contribution describes the new elements of Landlab, discusses why certain backward-compatiblity-breaking changes were made, and reflects on the process of community open-source software development.
Helen W. Beeson and Scott W. McCoy
Earth Surf. Dynam., 8, 123–159, https://doi.org/10.5194/esurf-8-123-2020, https://doi.org/10.5194/esurf-8-123-2020, 2020
Short summary
Short summary
We used a computer model to show that, when a landscape is tilted, rivers respond in a distinct way such that river profiles take on unique forms that record tilt timing and magnitude. Using this suite of river forms, we estimated tilt timing and magnitude in the Sierra Nevada, USA, and results were consistent with independent measures. Our work broadens the scope of tectonic histories that can be extracted from landscape form to include tilting, which has been documented in diverse locations.
Claire Rault, Alexandra Robert, Odin Marc, Niels Hovius, and Patrick Meunier
Earth Surf. Dynam., 7, 829–839, https://doi.org/10.5194/esurf-7-829-2019, https://doi.org/10.5194/esurf-7-829-2019, 2019
Short summary
Short summary
Large earthquakes trigger thousands of landslides in the area of their epicentre. For three earthquake cases, we have determined the position of these landslides along hillslopes. These co-seismic landslides tend to cluster at ridge crests and slope toes. We show that crest clustering is specific to seismic triggering. But although co-seismic landslides locate higher in the landscape than rainfall-induced landslides, geological features strongly modulate their position along the hillslopes.
Katherine R. Barnhart, Rachel C. Glade, Charles M. Shobe, and Gregory E. Tucker
Geosci. Model Dev., 12, 1267–1297, https://doi.org/10.5194/gmd-12-1267-2019, https://doi.org/10.5194/gmd-12-1267-2019, 2019
Short summary
Short summary
Terrainbento 1.0 is a Python package for modeling the evolution of the surface of the Earth over geologic time (e.g., thousands to millions of years). Despite many decades of effort by the geomorphology community, there is no one established governing equation for the evolution of topography. Terrainbento 1.0 thus provides 28 alternative models that support hypothesis testing and multi-model analysis in landscape evolution.
Odin Marc, Robert Behling, Christoff Andermann, Jens M. Turowski, Luc Illien, Sigrid Roessner, and Niels Hovius
Earth Surf. Dynam., 7, 107–128, https://doi.org/10.5194/esurf-7-107-2019, https://doi.org/10.5194/esurf-7-107-2019, 2019
Short summary
Short summary
We mapped eight monsoon-related (> 100 m2) and large (> 0.1 km2) landslides in the Nepal Himalayas since 1970. Adding inventories of Holocene landslides, giant landslides (> 1 km3), and landslides from the 2015 Gorkha earthquake, we constrain the size–frequency distribution of monsoon- and earthquake-induced landslides. Both contribute ~50 % to a long-term (> 10 kyr) total erosion of ~2 mm yr-1, matching the long-term exhumation rate. Large landslides rarer than 10Be sampling time drive erosion.
Odin Marc, André Stumpf, Jean-Philippe Malet, Marielle Gosset, Taro Uchida, and Shou-Hao Chiang
Earth Surf. Dynam., 6, 903–922, https://doi.org/10.5194/esurf-6-903-2018, https://doi.org/10.5194/esurf-6-903-2018, 2018
Short summary
Short summary
Rainfall-induced landslides cause significant damage and fatality worldwide, but we have few datasets constraining the impact of individual storms. We present and analyze 8 landslide inventories, with >150 to >150 00 landslides, comprehensively representing the landslide population caused by 8 storms from Asia and the Americas. We found that the total storm rainfall is a major control on total landsliding, landslide size, and that storms trigger landslides on less steep slopes than earthquakes.
Gregory E. Tucker, Scott W. McCoy, and Daniel E. J. Hobley
Earth Surf. Dynam., 6, 563–582, https://doi.org/10.5194/esurf-6-563-2018, https://doi.org/10.5194/esurf-6-563-2018, 2018
Short summary
Short summary
This article presents a new technique for computer simulation of slope forms. The method provides a way to study how events that disturb soil or turn rock into soil add up over time to produce landforms. The model represents a cross section of a hypothetical landform as a lattice of cells, each of which may represent air, soil, or rock. Despite its simplicity, the model does a good job of simulating a range of common of natural slope forms.
Charles M. Shobe, Gregory E. Tucker, and Katherine R. Barnhart
Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017, https://doi.org/10.5194/gmd-10-4577-2017, 2017
Short summary
Short summary
Rivers control the movement of sediment and nutrients across Earth's surface. Understanding how rivers change through time is important for mitigating natural hazards and predicting Earth's response to climate change. We develop a new computer model for predicting how rivers cut through sediment and rock. Our model is designed to be joined with models of flooding, landslides, vegetation change, and other factors to provide a comprehensive toolbox for predicting changes to the landscape.
Odin Marc, Patrick Meunier, and Niels Hovius
Nat. Hazards Earth Syst. Sci., 17, 1159–1175, https://doi.org/10.5194/nhess-17-1159-2017, https://doi.org/10.5194/nhess-17-1159-2017, 2017
Short summary
Short summary
We present an analytical expression for the surface area of the region within which landslides induced by a given earthquake are distributed. The expression is based on seismological scaling laws. Without calibration the model predicts, within a factor of 2, up to 49 out of 83 cases reported in the literature and agrees with the smallest region around the fault containing 95 % of the total landslide area. This model may be used for hazard assessment based on early earthquake detection parameters.
Robert Emberson, Niels Hovius, Albert Galy, and Odin Marc
Earth Surf. Dynam., 4, 727–742, https://doi.org/10.5194/esurf-4-727-2016, https://doi.org/10.5194/esurf-4-727-2016, 2016
Short summary
Short summary
Rapid dissolution of bedrock and regolith mobilised by landslides can be an important control on rates of overall chemical weathering in mountain ranges. In this study we analysed a number of landslides and rivers in Taiwan to better understand why this occurs. We find that sulfuric acid resulting from rapid oxidation of highly reactive sulfides in landslide deposits drives the intense weathering and can set catchment-scale solute budgets. This could be a CO2 source in fast-eroding mountains.
O. Marc and N. Hovius
Nat. Hazards Earth Syst. Sci., 15, 723–733, https://doi.org/10.5194/nhess-15-723-2015, https://doi.org/10.5194/nhess-15-723-2015, 2015
Short summary
Short summary
We present how amalgamation (i.e. the mapping of several adjacent landslides as a single polygon) can distort results derived from landslide mapping. Errors on the total landslide volume and power-law exponent of the area–frequency distribution, resulting from amalgamation, may be up to 200 and 50%, respectively. We present an algorithm based on image and DEM analysis, for automatic identification of amalgamated polygons, allowing one to check and correct landslide inventories faster.
K. R. Barnhart, I. Overeem, and R. S. Anderson
The Cryosphere, 8, 1777–1799, https://doi.org/10.5194/tc-8-1777-2014, https://doi.org/10.5194/tc-8-1777-2014, 2014
Related subject area
Physical: Landscape Evolution: modelling and field studies
Channel concavity controls planform complexity of branching drainage networks
Knickpoints and fixed points: the evolution of fluvial morphology under the combined effect of fault uplift and dam obstruction on a soft bedrock river
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Short Communication: Numerically simulated time to steady state is not a reliable measure of landscape response time
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Drainage rearrangement in an intra-continental mountain belt: a case study from the central South Tian Shan, Kyrgyzstan
Flexural isostatic response of continental-scale deltas to climatically driven sea level changes
Scaling between volume and runout of rock avalanches explained by a modified Voellmy rheology
Past anthropogenic land use change caused a regime shift of the fluvial response to Holocene climate change in the Chinese Loess Plateau
Refining patterns of melt with forward stratigraphic models of stable Pleistocene coastlines
Optimising global landscape evolution models with 10Be
Self-organization of channels and hillslopes in models of fluvial landform evolution and its potential for solving scaling issues
Stream laws in analog tectonic-landscape models
A control volume finite-element model for predicting the morphology of cohesive-frictional debris flow deposits
Erosion and weathering in carbonate regions reveal climatic and tectonic drivers of carbonate landscape evolution
Patterns and rates of soil movement and shallow failures across several small watersheds on the Seward Peninsula, Alaska
River incision, 10Be production and transport in a source-to-sink sediment system (Var catchment, SW Alps)
Simulating the effect of subsurface drainage on the thermal regime and ground ice in blocky terrain in Norway
An experimental study of drainage network development by surface and subsurface flow in low-gradient landscapes
The push and pull of abandoned channels: how floodplain processes and healing affect avulsion dynamics and alluvial landscape evolution in foreland basins
Climate changes and the formation of fluvial terraces in central Amazonia inferred from landscape evolution modeling
Investigation of stochastic-threshold incision models across a climatic and morphological gradient
Comparing the transport-limited and ξ–q models for sediment transport
Autogenic knickpoints in laboratory landscape experiments
Transmissivity and groundwater flow exert a strong influence on drainage density
Graphically interpreting how incision thresholds influence topographic and scaling properties of modeled landscapes
Escarpment retreat rates derived from detrital cosmogenic nuclide concentrations
Hilltop curvature as a proxy for erosion rate: wavelets enable rapid computation and reveal systematic underestimation
Short communication: Analytical models for 2D landscape evolution
Effect of rock uplift and Milankovitch timescale variations in precipitation and vegetation cover on catchment erosion rates
Modeling glacial and fluvial landform evolution at large scales using a stream-power approach
Topographic disequilibrium, landscape dynamics and active tectonics: an example from the Bhutan Himalaya
Last-glacial-cycle glacier erosion potential in the Alps
The rate and extent of wind-gap migration regulated by tributary confluences and avulsions
Inferring potential landslide damming using slope stability, geomorphic constraints, and run-out analysis: a case study from the NW Himalaya
Groundwater erosion of coastal gullies along the Canterbury coast (New Zealand): a rapid and episodic process controlled by rainfall intensity and substrate variability
Erosional response of granular material in landscape models
Transport-limited fluvial erosion – simple formulation and efficient numerical treatment
Dimensional analysis of a landscape evolution model with incision threshold
Computing water flow through complex landscapes – Part 2: Finding hierarchies in depressions and morphological segmentations
Rivers as linear elements in landform evolution models
Interactions between main channels and tributary alluvial fans: channel adjustments and sediment-signal propagation
Drainage divide networks – Part 1: Identification and ordering in digital elevation models
Drainage divide networks – Part 2: Response to perturbations
Hillslope denudation and morphologic response to a rock uplift gradient
Geomorphic signatures of the transient fluvial response to tilting
The destiny of orogen-parallel streams in the Eastern Alps: the Salzach–Enns drainage system
Statistical modelling of co-seismic knickpoint formation and river response to fault slip
A versatile, linear complexity algorithm for flow routing in topographies with depressions
Can the growth of deltaic shorelines be unstable?
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024, https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary
Short summary
To explore the pattern formed by rivers as they crisscross the land, we developed a way to measure how these patterns vary, from straight to complex, winding paths. We discovered that a river's degree of complexity depends on how the river slope changes downstream. Although this is strange (i.e., why would changes in slope affect twists of a river in map view?), we show that this dependency is almost inevitable and that the complexity could signify how arid the climate is or used to be.
Hung-En Chen, Yen-Yu Chiu, Chih-Yuan Cheng, and Su-Chin Chen
Earth Surf. Dynam., 12, 1329–1346, https://doi.org/10.5194/esurf-12-1329-2024, https://doi.org/10.5194/esurf-12-1329-2024, 2024
Short summary
Short summary
This study explores the fluvial morphology evolution in three rivers in Taiwan caused by natural tectonic movements (the 1999 Mw 7.6 Chi-Chi earthquake) and human-made structures (dams). Knickpoints resulting from riverbed uplift shift, leading to gradual evolution from instability to equilibrium. Dams, on the other hand, cause continuous degradation of the bed. When both effects exist on a reach, the impact of the knickpoint gradually fades away, but the effects of the dam on the river persist.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024, https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations that describe surface water flow. Using quantitative data on rainfall and elevation, GraphFlood calculates river width and depth and approximates erosive power, making it a suitable tool for large-scale hazard management and understanding the relationship between rivers and mountains.
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024, https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Short summary
The time it takes for a landscape to adjust to new environmental conditions is critical for understanding the impacts of past and future environmental changes. We used different computational models and methods and found that predicted times for a landscape to reach a stable condition vary greatly. Our results illustrate that reporting how timescales are measured is important. Modelers should ensure that the measurement technique addresses the question.
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024, https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
Short summary
Toma hills are relatively isolated hills found in the deposits of rock avalanches, and their origin is still enigmatic. This paper presents the results of numerical simulations based on a modified version of a friction law that was originally introduced for snow avalanches. The model produces more or less isolated hills (which look much like toma hills) on the valley floor. The results provide, perhaps, the first explanation of the occurrence of toma hills based on a numerical model.
Lingxiao Gong, Peter van der Beek, Taylor F. Schildgen, Edward R. Sobel, Simone Racano, Apolline Mariotti, and Fergus McNab
Earth Surf. Dynam., 12, 973–994, https://doi.org/10.5194/esurf-12-973-2024, https://doi.org/10.5194/esurf-12-973-2024, 2024
Short summary
Short summary
We choose the large Saryjaz river from South Tian Shan to analyse topographic and fluvial metrics. By quantifying the spatial distribution of major metrics and comparing with modelling patterns, we suggest that the observed transience was triggered by a big capture event during the Plio-Pleistocene and potentially affected by both tectonic and climate factors. This conclusion underlines the importance of local contingent factors in driving drainage development.
Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, and Louis Moresi
Earth Surf. Dynam., 12, 301–320, https://doi.org/10.5194/esurf-12-301-2024, https://doi.org/10.5194/esurf-12-301-2024, 2024
Short summary
Short summary
Two-thirds of the world's most populated cities are situated close to deltas. We use computer simulations to understand how deltas sink or rise in response to climate-driven sea level changes that operate from thousands to millions of years. Our research shows that because of the interaction between the outer layers of the Earth, sediment transport, and sea level changes deltas develop a self-regulated mechanism that modifies the space they need to gain or lose land.
Stefan Hergarten
Earth Surf. Dynam., 12, 219–229, https://doi.org/10.5194/esurf-12-219-2024, https://doi.org/10.5194/esurf-12-219-2024, 2024
Short summary
Short summary
Large landslides turn into an avalanche-like mode of flow at high velocities, which allows for a much longer runout than predicted for a sliding solid body. In this study, the Voellmy rheology widely used in models for hazard assessment is reinterpreted and extended. The new approach predicts the increase in runout length with volume observed in nature quite well and may thus be a major step towards a more consistent modeling of rock avalanches and improved hazard assessment.
Hao Chen, Xianyan Wang, Yanyan Yu, Huayu Lu, and Ronald Van Balen
Earth Surf. Dynam., 12, 163–180, https://doi.org/10.5194/esurf-12-163-2024, https://doi.org/10.5194/esurf-12-163-2024, 2024
Short summary
Short summary
The Wei River catchment, one of the centers of the agricultural revolution in China, has experienced intense land use changes since 6000 BCE. This makes it an ideal place to study the response of river systems to anthropogenic land use change. Modeling results show the sensitivity of discharge and sediment yield to climate change increased abruptly when the agricultural land area exceeded a threshold at around 1000 BCE. This regime shift in the fluvial catchment led to a large sediment pulse.
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023, https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Gregory A. Ruetenik, John D. Jansen, Pedro Val, and Lotta Ylä-Mella
Earth Surf. Dynam., 11, 865–880, https://doi.org/10.5194/esurf-11-865-2023, https://doi.org/10.5194/esurf-11-865-2023, 2023
Short summary
Short summary
We compare models of erosion against a global compilation of long-term erosion rates in order to find and interpret best-fit parameters using an iterative search. We find global signals among exponents which control the relationship between erosion rate and slope, as well as other parameters which are common in long-term erosion modelling. Finally, we analyse the global variability in parameters and find a correlation between precipitation and coefficients for optimised models.
Stefan Hergarten and Alexa Pietrek
Earth Surf. Dynam., 11, 741–755, https://doi.org/10.5194/esurf-11-741-2023, https://doi.org/10.5194/esurf-11-741-2023, 2023
Short summary
Short summary
The transition from hillslopes to channelized flow is typically attributed to a threshold catchment size in landform evolution models. Here we propose an alternative concept directly based on topography. Using this concept, channels and hillslopes self-organize, whereby the catchment size of the channel heads varies over some range. Our numerical results suggest that this concept works better than the established idea of a strict threshold catchment size.
Riccardo Reitano, Romano Clementucci, Ethan M. Conrad, Fabio Corbi, Riccardo Lanari, Claudio Faccenna, and Chiara Bazzucchi
Earth Surf. Dynam., 11, 731–740, https://doi.org/10.5194/esurf-11-731-2023, https://doi.org/10.5194/esurf-11-731-2023, 2023
Short summary
Short summary
Tectonics and surface processes work together in shaping orogens through their evolution. Laboratory models are used to overcome some limitations of direct observations since they allow for continuous and detailed analysis of analog orogens. We use a rectangular box filled with an analog material made of granular materials to study how erosional laws apply and how erosion affects the analog landscape as a function of the applied boundary conditions (regional slope and rainfall rate).
Tzu-Yin Kasha Chen, Ying-Chen Wu, Chi-Yao Hung, Hervé Capart, and Vaughan R. Voller
Earth Surf. Dynam., 11, 325–342, https://doi.org/10.5194/esurf-11-325-2023, https://doi.org/10.5194/esurf-11-325-2023, 2023
Short summary
Short summary
Predicting the extent and thickness of debris flow deposits is important for assessing and mitigating hazards. We propose a simplified mass balance model for predicting the morphology of terminated debris flows depositing over complex topography. A key element in this model is that the termination of flow of the deposit is determined by prescribed values of yield stress and friction angle. The model results are consistent with available analytical solutions and field and laboratory observations.
Richard Ott, Sean F. Gallen, and David Helman
Earth Surf. Dynam., 11, 247–257, https://doi.org/10.5194/esurf-11-247-2023, https://doi.org/10.5194/esurf-11-247-2023, 2023
Short summary
Short summary
We compile data on carbonate denudation, the sum of mechanical erosion and chemical weathering, from cosmogenic nuclides and use them in conjunction with weathering data to constrain the partitioning of denudation into erosion and weathering. We show how carbonate erosion and weathering respond to different climatic and tectonic conditions and find that variations in denudation partitioning can be used to explain the vastly different morphology of carbonate landscapes on Earth.
Joanmarie Del Vecchio, Emma R. Lathrop, Julian B. Dann, Christian G. Andresen, Adam D. Collins, Michael M. Fratkin, Simon Zwieback, Rachel C. Glade, and Joel C. Rowland
Earth Surf. Dynam., 11, 227–245, https://doi.org/10.5194/esurf-11-227-2023, https://doi.org/10.5194/esurf-11-227-2023, 2023
Short summary
Short summary
In cold regions of the Earth, thawing permafrost can change the landscape, impact ecosystems, and lead to the release of greenhouse gases. In this study we used many observational tools to better understand how sediment moves on permafrost hillslopes. Some topographic change conforms to our understanding of slope stability and sediment transport as developed in temperate landscapes, but much of what we observed needs further explanation by permafrost-specific geomorphic models.
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023, https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Short summary
We present new tools in the landscape evolution model Badlands to simulate 10Be production, erosion and transport. These tools are applied to a source-to-sink system in the SW French Alps, where the model is calibrated. We propose a model that fits river incision rates and 10Be concentrations in sediments, and we show that 10Be in deep marine sediments is a signal with multiple contributions that cannot be easily interpreted in terms of climate forcing.
Cas Renette, Kristoffer Aalstad, Juditha Aga, Robin Benjamin Zweigel, Bernd Etzelmüller, Karianne Staalesen Lilleøren, Ketil Isaksen, and Sebastian Westermann
Earth Surf. Dynam., 11, 33–50, https://doi.org/10.5194/esurf-11-33-2023, https://doi.org/10.5194/esurf-11-33-2023, 2023
Short summary
Short summary
One of the reasons for lower ground temperatures in coarse, blocky terrain is a low or varying soil moisture content, which most permafrost modelling studies did not take into account. We used the CryoGrid community model to successfully simulate this effect and found markedly lower temperatures in well-drained, blocky deposits compared to other set-ups. The inclusion of this drainage effect is another step towards a better model representation of blocky mountain terrain in permafrost regions.
Brian G. Sockness and Karen B. Gran
Earth Surf. Dynam., 10, 581–603, https://doi.org/10.5194/esurf-10-581-2022, https://doi.org/10.5194/esurf-10-581-2022, 2022
Short summary
Short summary
To study channel network development following continental glaciation, we ran small physical experiments where networks slowly expanded into flat surfaces. By changing substrate and rainfall, we altered flow pathways between surface and subsurface. Initially, most channels grew by overland flow. As relief increased, erosion through groundwater sapping occurred, especially in runs with high infiltration and low cohesion, highlighting the importance of groundwater in channel network evolution.
Harrison K. Martin and Douglas A. Edmonds
Earth Surf. Dynam., 10, 555–579, https://doi.org/10.5194/esurf-10-555-2022, https://doi.org/10.5194/esurf-10-555-2022, 2022
Short summary
Short summary
River avulsions (rivers suddenly changing course) redirect water and sediment. These floods can harm people and control how some landscapes evolve. We model how abandoned channels from older avulsions affect where, when, and why future avulsions occur in mountain-front areas. We show that abandoned channels can push and pull avulsions, and the way they heal controls landscapes. Avulsion models should include abandoned channels; we also highlight opportunities for future field workers.
Ariel Henrique do Prado, Renato Paes de Almeida, Cristiano Padalino Galeazzi, Victor Sacek, and Fritz Schlunegger
Earth Surf. Dynam., 10, 457–471, https://doi.org/10.5194/esurf-10-457-2022, https://doi.org/10.5194/esurf-10-457-2022, 2022
Short summary
Short summary
Our work is focused on describing how and why the terrace levels of central Amazonia were formed during the last 100 000 years. We propose to address this question through a landscape evolution numerical model. Our results show that terrace levels at lower elevation were established in response to dry–wet climate changes and the older terrace levels at higher elevations most likely formed in response to a previously higher elevation of the regional base level.
Clément Desormeaux, Vincent Godard, Dimitri Lague, Guillaume Duclaux, Jules Fleury, Lucilla Benedetti, Olivier Bellier, and the ASTER Team
Earth Surf. Dynam., 10, 473–492, https://doi.org/10.5194/esurf-10-473-2022, https://doi.org/10.5194/esurf-10-473-2022, 2022
Short summary
Short summary
Landscape evolution is highly dependent on climatic parameters, and the occurrence of intense precipitation events is considered to be an important driver of river incision. We compare the rate of erosion with the variability of river discharge in a mountainous landscape of SE France where high-magnitude floods regularly occur. Our study highlights the importance of the hypotheses made regarding the threshold that river discharge needs to exceed in order to effectively cut down into the bedrock.
Jean Braun
Earth Surf. Dynam., 10, 301–327, https://doi.org/10.5194/esurf-10-301-2022, https://doi.org/10.5194/esurf-10-301-2022, 2022
Short summary
Short summary
By comparing two models for the transport of sediment, we find that they share a similar steady-state solution that adequately predicts the shape of most depositional systems made of a fan and an alluvial plain. The length of the fan is controlled by the size of the mountain drainage area feeding the sedimentary system and its slope by the incoming sedimentary flux. We show that the models differ in their transient behavior to external forcing and are characterized by different response times.
Léopold de Lavaissière, Stéphane Bonnet, Anne Guyez, and Philippe Davy
Earth Surf. Dynam., 10, 229–246, https://doi.org/10.5194/esurf-10-229-2022, https://doi.org/10.5194/esurf-10-229-2022, 2022
Short summary
Short summary
Rivers are known to record changes in tectonic or climatic variation through long adjustment of their longitudinal profile slope. Here we describe such adjustments in experimental landscapes and show that they may result from the sole effect of intrinsic geomorphic processes. We propose a new model of river evolution that links long profile adjustment to cycles of river widening and narrowing. This result emphasizes the need to better understand control of lateral erosion on river width.
Elco Luijendijk
Earth Surf. Dynam., 10, 1–22, https://doi.org/10.5194/esurf-10-1-2022, https://doi.org/10.5194/esurf-10-1-2022, 2022
Short summary
Short summary
The distance between rivers is a noticeable feature of the Earth's surface. Previous work has indicated that subsurface groundwater flow may be important for drainage density. Here, I present a new model that combines subsurface and surface water flow and erosion, and demonstrates that groundwater exerts an important control on drainage density. Streams that incise rapidly can capture the groundwater discharge of adjacent streams, which may cause these streams to become dry and stop incising.
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 9, 1545–1561, https://doi.org/10.5194/esurf-9-1545-2021, https://doi.org/10.5194/esurf-9-1545-2021, 2021
Short summary
Short summary
We examine stream-power incision and linear diffusion landscape evolution models with and without incision thresholds. We present a steady-state relationship between curvature and the steepness index, which plots as a straight line. We view this line as a counterpart to the slope–area relationship for the case of landscapes with hillslope diffusion. We show that simple shifts and rotations of this line graphically express the topographic response of landscapes to changes in model parameters.
Yanyan Wang and Sean D. Willett
Earth Surf. Dynam., 9, 1301–1322, https://doi.org/10.5194/esurf-9-1301-2021, https://doi.org/10.5194/esurf-9-1301-2021, 2021
Short summary
Short summary
Although great escarpment mountain ranges are characterized by high relief, modern erosion rates suggest slow rates of landscape change. We question this interpretation by presenting a new method for interpreting concentrations of cosmogenic isotopes. Our analysis shows that erosion has localized onto an escarpment face, driving retreat of the escarpment at high rates. Our quantification of this retreat rate rationalizes the high-relief, dramatic landscape with the rates of geomorphic change.
William T. Struble and Joshua J. Roering
Earth Surf. Dynam., 9, 1279–1300, https://doi.org/10.5194/esurf-9-1279-2021, https://doi.org/10.5194/esurf-9-1279-2021, 2021
Short summary
Short summary
We used a mathematical technique known as a wavelet transform to calculate the curvature of hilltops in western Oregon, which we used to estimate erosion rate. We find that this technique operates over 1000 times faster than other techniques and produces accurate erosion rates. We additionally built artificial hillslopes to test the accuracy of curvature measurement methods. We find that at fast erosion rates, curvature is underestimated, raising questions of measurement accuracy elsewhere.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Hemanti Sharma, Todd A. Ehlers, Christoph Glotzbach, Manuel Schmid, and Katja Tielbörger
Earth Surf. Dynam., 9, 1045–1072, https://doi.org/10.5194/esurf-9-1045-2021, https://doi.org/10.5194/esurf-9-1045-2021, 2021
Short summary
Short summary
We study effects of variable climate–vegetation with different uplift rates on erosion–sedimentation using a landscape evolution modeling approach. Results suggest that regardless of uplift rates, transients in precipitation–vegetation lead to transients in erosion rates in the same direction of change. Vegetation-dependent erosion and sedimentation are influenced by Milankovitch timescale changes in climate, but these transients are superimposed upon tectonically driven uplift rates.
Stefan Hergarten
Earth Surf. Dynam., 9, 937–952, https://doi.org/10.5194/esurf-9-937-2021, https://doi.org/10.5194/esurf-9-937-2021, 2021
Short summary
Short summary
This paper presents a new approach to modeling glacial erosion on large scales. The formalism is similar to large-scale models of fluvial erosion, so glacial and fluvial processes can be easily combined. The model is simpler and numerically less demanding than established models based on a more detailed description of the ice flux. The numerical implementation almost achieves the efficiency of purely fluvial models, so that simulations over millions of years can be performed on standard PCs.
Martine Simoes, Timothée Sassolas-Serrayet, Rodolphe Cattin, Romain Le Roux-Mallouf, Matthieu Ferry, and Dowchu Drukpa
Earth Surf. Dynam., 9, 895–921, https://doi.org/10.5194/esurf-9-895-2021, https://doi.org/10.5194/esurf-9-895-2021, 2021
Short summary
Short summary
Elevated low-relief regions and major river knickpoints have for long been noticed and questioned in the emblematic Bhutan Himalaya. We document the morphology of this region using morphometric analyses and field observations, at a variety of spatial scales. Our findings reveal a highly unstable river network, with numerous non-coeval river captures, most probably related to a dynamic response to local tectonic uplift in the mountain hinterland.
Julien Seguinot and Ian Delaney
Earth Surf. Dynam., 9, 923–935, https://doi.org/10.5194/esurf-9-923-2021, https://doi.org/10.5194/esurf-9-923-2021, 2021
Short summary
Short summary
Ancient Alpine glaciers have carved a fascinating landscape of piedmont lakes, glacial valleys, and mountain cirques. Using a previous supercomputer simulation of glacier flow, we show that glacier erosion has constantly evolved and moved to different parts of the Alps. Interestingly, larger glaciers do not always cause more rapid erosion. Instead, glacier erosion is modelled to slow down during glacier advance and peak during phases of retreat, such as the one the Earth is currently undergoing.
Eitan Shelef and Liran Goren
Earth Surf. Dynam., 9, 687–700, https://doi.org/10.5194/esurf-9-687-2021, https://doi.org/10.5194/esurf-9-687-2021, 2021
Short summary
Short summary
Drainage basins are bounded by water divides (divides) that define their shape and extent. Divides commonly coincide with high ridges, but in places that experienced extensive tectonic deformation, divides sometimes cross elongated valleys. Inspired by field observations and using simulations of landscape evolution, we study how side channels that drain to elongated valleys induce pulses of divide migration, affecting the distribution of water and erosion products across mountain ranges.
Vipin Kumar, Imlirenla Jamir, Vikram Gupta, and Rajinder K. Bhasin
Earth Surf. Dynam., 9, 351–377, https://doi.org/10.5194/esurf-9-351-2021, https://doi.org/10.5194/esurf-9-351-2021, 2021
Short summary
Short summary
Despite a history of landslide damming and flash floods in the NW Himalaya, only a few studies have been performed. This study predicts some potential landslide damming sites in the Satluj valley, NW Himalaya, using field observations, laboratory analyses, geomorphic proxies, and numerical simulations. Five landslides, comprising a total landslide volume of 26.3 ± 6.7 M m3, are found to have the potential to block the river in the case of slope failure.
Aaron Micallef, Remus Marchis, Nader Saadatkhah, Potpreecha Pondthai, Mark E. Everett, Anca Avram, Alida Timar-Gabor, Denis Cohen, Rachel Preca Trapani, Bradley A. Weymer, and Phillipe Wernette
Earth Surf. Dynam., 9, 1–18, https://doi.org/10.5194/esurf-9-1-2021, https://doi.org/10.5194/esurf-9-1-2021, 2021
Short summary
Short summary
We study coastal gullies along the Canterbury coast of New Zealand using field observations, sample analyses, drones, satellites, geophysical instruments and modelling. We show that these coastal gullies form when rainfall intensity is higher than 40 mm per day. The coastal gullies are formed by landslides where buried channels or sand lenses are located. This information allows us to predict where coastal gullies may form in the future.
Riccardo Reitano, Claudio Faccenna, Francesca Funiciello, Fabio Corbi, and Sean D. Willett
Earth Surf. Dynam., 8, 973–993, https://doi.org/10.5194/esurf-8-973-2020, https://doi.org/10.5194/esurf-8-973-2020, 2020
Short summary
Short summary
Looking into processes that occur on different timescales that span over thousands or millions of years is difficult to achieve. This is the case when we try to understand the interaction between tectonics and surface processes. Analog modeling is an investigating technique that can overcome this limitation. We study the erosional response of an analog landscape by varying the concentration of components of analog materials that strongly affect the evolution of experimental landscapes.
Stefan Hergarten
Earth Surf. Dynam., 8, 841–854, https://doi.org/10.5194/esurf-8-841-2020, https://doi.org/10.5194/esurf-8-841-2020, 2020
Short summary
Short summary
Many contemporary models of large-scale fluvial erosion focus on the detachment-limited regime where all material entrained by the river is immediately excavated. This limitation facilitates the comparison with real river profiles and strongly reduces the numerical complexity. Here a simple formulation for the opposite case, transport-limited erosion, and a new numerical scheme that achieves almost the same numerical efficiency as detachment-limited models are presented.
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 8, 505–526, https://doi.org/10.5194/esurf-8-505-2020, https://doi.org/10.5194/esurf-8-505-2020, 2020
Short summary
Short summary
We non-dimensionalized a commonly used model of landscape evolution that includes an incision threshold. Whereas the original model included four parameters, we obtained a dimensionless form with a single parameter, which quantifies the relative importance of the incision threshold. Working with this form saves computational time and simplifies theoretical analyses.
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 8, 431–445, https://doi.org/10.5194/esurf-8-431-2020, https://doi.org/10.5194/esurf-8-431-2020, 2020
Short summary
Short summary
Maps of elevation are used to help predict the flow of water so we can better understand landslides, floods, and global climate change. However, modeling the flow of water is difficult when elevation maps include swamps, lakes, and other depressions. This paper explains a new method that overcomes these difficulties, allowing models to run faster and more accurately.
Stefan Hergarten
Earth Surf. Dynam., 8, 367–377, https://doi.org/10.5194/esurf-8-367-2020, https://doi.org/10.5194/esurf-8-367-2020, 2020
Short summary
Short summary
Models of fluvial erosion have a long history in landform evolution modeling. Interactions between rivers and processes acting at hillslopes (e.g., landslides) are receiving growing interest in this context. While present-day computer capacities allow for applying such coupled models, there is still a scaling problem when considering rivers to be linear elements on a topography. Based on a reinterpretation of old empirical results, this study presents a new approach to overcome this problem.
Sara Savi, Stefanie Tofelde, Andrew D. Wickert, Aaron Bufe, Taylor F. Schildgen, and Manfred R. Strecker
Earth Surf. Dynam., 8, 303–322, https://doi.org/10.5194/esurf-8-303-2020, https://doi.org/10.5194/esurf-8-303-2020, 2020
Short summary
Short summary
Fluvial deposits record changes in water and sediment supply. As such, they are often used to reconstruct the tectonic or climatic history of a basin. In this study we used an experimental setting to analyze how fluvial deposits register changes in water or sediment supply at a confluence zone. We provide a new conceptual framework that may help understanding the construction of these deposits under different forcings conditions, information crucial to correctly inferring the history of a basin.
Dirk Scherler and Wolfgang Schwanghart
Earth Surf. Dynam., 8, 245–259, https://doi.org/10.5194/esurf-8-245-2020, https://doi.org/10.5194/esurf-8-245-2020, 2020
Short summary
Short summary
Drainage divides are believed to provide clues about divide migration and the instability of landscapes. Here, we present a novel approach to extract drainage divides from digital elevation models and to order them in a drainage divide network. We present our approach by studying natural and artificial landscapes generated with a landscape evolution model and disturbed to induce divide migration.
Dirk Scherler and Wolfgang Schwanghart
Earth Surf. Dynam., 8, 261–274, https://doi.org/10.5194/esurf-8-261-2020, https://doi.org/10.5194/esurf-8-261-2020, 2020
Short summary
Short summary
Drainage divides are believed to provide clues about divide migration and the instability of landscapes. Here, we present a novel approach to extract drainage divides from digital elevation models and to order them in a drainage divide network. We present our approach by studying natural and artificial landscapes generated with a landscape evolution model and disturbed to induce divide migration.
Vincent Godard, Jean-Claude Hippolyte, Edward Cushing, Nicolas Espurt, Jules Fleury, Olivier Bellier, Vincent Ollivier, and the ASTER Team
Earth Surf. Dynam., 8, 221–243, https://doi.org/10.5194/esurf-8-221-2020, https://doi.org/10.5194/esurf-8-221-2020, 2020
Short summary
Short summary
Slow-slipping faults are often difficult to identify in landscapes. Here we analyzed high-resolution topographic data from the Valensole area at the front of the southwestern French Alps. We measured various properties of hillslopes such as their relief and the shape of hilltops. We observed systematic spatial variations of hillslope morphology indicative of relative changes in erosion rates. These variations are potentially related to slow tectonic deformation across the studied area.
Helen W. Beeson and Scott W. McCoy
Earth Surf. Dynam., 8, 123–159, https://doi.org/10.5194/esurf-8-123-2020, https://doi.org/10.5194/esurf-8-123-2020, 2020
Short summary
Short summary
We used a computer model to show that, when a landscape is tilted, rivers respond in a distinct way such that river profiles take on unique forms that record tilt timing and magnitude. Using this suite of river forms, we estimated tilt timing and magnitude in the Sierra Nevada, USA, and results were consistent with independent measures. Our work broadens the scope of tectonic histories that can be extracted from landscape form to include tilting, which has been documented in diverse locations.
Georg Trost, Jörg Robl, Stefan Hergarten, and Franz Neubauer
Earth Surf. Dynam., 8, 69–85, https://doi.org/10.5194/esurf-8-69-2020, https://doi.org/10.5194/esurf-8-69-2020, 2020
Short summary
Short summary
The evolution of the drainage system in the Eastern Alps is inherently linked to different tectonic stages. This leads to a situation in which major orogen-parallel alpine rivers, such as the Salzach and the Enns, are characterized by elongated east–west-oriented catchments. We investigate the stability of present-day drainage divides and the stability of reconstructed paleo-drainage systems. Our results indicate a progressive stability of the network towards the present-day situation.
Philippe Steer, Thomas Croissant, Edwin Baynes, and Dimitri Lague
Earth Surf. Dynam., 7, 681–706, https://doi.org/10.5194/esurf-7-681-2019, https://doi.org/10.5194/esurf-7-681-2019, 2019
Short summary
Short summary
We use a statistical earthquake generator to investigate the influence of fault activity on river profile development and on the formation of co-seismic knickpoints. We find that the magnitude distribution of knickpoints resulting from a purely seismic fault is homogeneous. Shallow aseismic slip favours knickpoints generated by large-magnitude earthquakes nucleating at depth. Accounting for fault burial by alluvial cover can modulate the topographic expression of earthquakes and fault activity.
Guillaume Cordonnier, Benoît Bovy, and Jean Braun
Earth Surf. Dynam., 7, 549–562, https://doi.org/10.5194/esurf-7-549-2019, https://doi.org/10.5194/esurf-7-549-2019, 2019
Short summary
Short summary
We propose a new algorithm to solve the problem of flow routing across local depressions in the topography, one of the main computational bottlenecks in landscape evolution models. Our solution is more efficient than the state-of-the-art algorithms, with an optimal linear asymptotic complexity. The algorithm has been designed specifically to be used within landscape evolution models, and also suits more generally the efficient treatment of large digital elevation models.
Meng Zhao, Gerard Salter, Vaughan R. Voller, and Shuwang Li
Earth Surf. Dynam., 7, 505–513, https://doi.org/10.5194/esurf-7-505-2019, https://doi.org/10.5194/esurf-7-505-2019, 2019
Short summary
Short summary
Typically, we think of a shoreline growing with a smooth line separating the land and the water. If the growth is unstable, however, the land–water front will exhibit a roughness that grows with time. Here we ask whether the growth of deltaic shorelines cab be unstable. Through mathematical analysis we show that growth is unstable when the shoreline is building onto an adverse slope. The length scale of the unstable signal in such a case, however, might be obscured by other geomorphic processes.
Cited articles
Clubb, F. J., Mudd, S. M., Attal, M., Milodowski, D. T., and Grieve, S. W.: The relationship between drainage density, erosion rate, and hilltop curvature: Implications for sediment transport processes, J. Geophys. Res.-Earth, 121, 1724–1745, 2016. a
DiBiase, R. A. and Whipple, K. X.: The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate, J. Geophys. Res.-Earth, 116, 2156–2202, https://doi.org/10.1029/2011JF002095, 2011. a, b, c, d
DiBiase, R. A., Whipple, K. X., Heimsath, A. M., and Ouimet, W. B.: Landscape form and millennial erosion rates in the San Gabriel Mountains, CA, Earth Planet. Sci. Lett., 289, 134–144, https://doi.org/10.1016/j.epsl.2009.10.036, 2010. a, b
DiBiase, R. A., Heimsath, A. M., and Whipple, K. X.: Hillslope response to tectonic forcing in threshold landscapes, Earth Surf. Proc. Land., 37, 855–865, https://doi.org/10.1002/esp.3205, 2012. a, b, c, d
Flint, J.-J.: Stream gradient as a function of order, magnitude, and discharge, Water Resour. Res., 10, 969–973, 1974. a
Haas, T. D. and Woerkom, T. V.: Bed scour by debris flows: experimental investigation of effects of debris-flow composition, Earth Surf. Proc. Land., 41, 1951–1966, 2016. a
Hack, J. T.: Studies of longitudinal stream profiles in Virginia and Maryland, vol. 294, US Geological Survey report, US Government Printing Office, https://pubs.usgs.gov/pp/0294b/report.pdf (last access: 7 November 2023), 1957. a
Herman, J. and Usher, W.: SALib: An open-source Python library for sensitivity analysis, J. Open Source Softw., 2, 97, https://doi.org/10.21105/joss.00097, 2017. a
Hsu, L., Dietrich, W. E., and Sklar, L. S.: Experimental study of bedrock erosion by granular flows, J. Geophys. Res.-Earth, 113, F02001, https://doi.org/10.1029/2007JF000778, 2008. a, b, c, d
Iverson, R. M.: Elementary theory of bed-sediment entrainment by debris flows and avalanches, J. Geophys. Res.-Earth, 117, F03006, https://doi.org/10.1029/2011JF002189, 2012. a
Iverson, R. M. and Ouyang, C.: Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory, Rev. Geophys., 53, 27–58, 2015. a
Lamb, M. P., Dietrich, W. E., and Venditti, J. G.: Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope?, J. Geophys. Res., 113, F02008, https://doi.org/10.1029/2007JF000831, 2008. a
Lavé, J. and Burbank, D.: Denudation processes and rates in the Transverse Ranges, southern California: Erosional response of a transitional landscape to external and anthropogenic forcing, J. Geophys. Res.-Earth, 109, F01006, https://doi.org/10.1029/2003JF000023, 2004. a
May, C. L.: Debris flows through different forest age classes in the central Oregon Coast Range, J. Am. Water Resour. As., 38, 1097–1113, 2002. a
May, C. L. and Gresswell, R. E.: Processes and rates of sediment and wood accumulation in headwater streams of the Oregon Coast Range, USA, Earth Surf. Proc. Land., 28, 409–424, 2003. a
McCoy, S., Kean, J. W., Coe, J. A., Tucker, G., Staley, D. M., and Wasklewicz, T.: Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment, J. Geophys. Res.-Earth, 117, F03016, https://doi.org/10.1029/2011JF002278, 2012. a
McCoy, S. W.: Controls on erosion and transport of mass by debris flows, PhD thesis, University of Colorado, Boulder, 2012. a
McCoy, S. W.: Infrequent, large-magnitude debris flows are important agents of landscape change, Geology, 43, 463–464, 2015. a
McGuire, L. A., Kean, J. W., Staley, D. M., Rengers, F. K., and Wasklewicz, T. A.: Constraining the relative importance of raindrop-and flow-driven sediment transport mechanisms in postwildfire environments and implications for recovery time scales, J. Geophys. Res.-Earth, 121, 2211–2237, 2016. a
McGuire, L. A., Rengers, F. K., Kean, J. W., and Staley, D. M.: Debris flow initiation by runoff in a recently burned basin: Is grain-by-grain sediment bulking or en masse failure to blame?, Geophys. Res. Lett., 44, 7310–7319, 2017. a
McGuire, L. A., McCoy, S. W., Odin, M., Struble, W., and Barnhart, K. R.: Numerical models for steady state channels shaped by debris flow and fluvial processes, HydroShare [code], http://www.hydroshare.org/resource/53dc6bada7d441179fae07df079fcd75 (last access: 11 July 2023), 2023. a
Montgomery, D. R. and Foufoula‐Georgiou, E.: Channel network source representation using digital elevation models, Water Resour. Res., 29, 3925–3934, https://doi.org/10.1029/93WR02463, 1993. a, b, c
Morisawa, M. E.: Quantitative geomorphology of some watersheds in the Appalachian Plateau, Geol. Soc. Am. Bull., 73, 1025–1046, 1962. a
Neely, A. B. and DiBiase, R. A.: Sediment controls on the transition from debris flow to fluvial channels in steep mountain ranges, Earth Surf. Proc. Land., https://doi.org/10.1002/esp.5553, in press, 2023. a
Pianosi, F. and Wagener, T.: A simple and efficient method for global sensitivity analysis based on cumulative distribution functions, Environ. Modell. Softw., 67, 1–11, 2015. a
Prancevic, J. P., Lamb, M. P., and Fuller, B. M.: Incipient sediment motion across the river to debris-flow transition, Geology, 42, 191–194, 2014. a
Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., Dobre, M., Robichaud, P. R., and Swetnam, T.: Movement of sediment through a burned landscape: Sediment volume observations and model comparisons in the San Gabriel Mountains, California, USA, J. Geophys. Res.-Earth, 126, e2020JF006053, https://doi.org/10.1029/2020JF006053, 2021. a
Seidl, M., Dietrich, W., Schmidt, K., and de Ploey, J.: The problem of channel erosion into bedrock, Functional Geomorphology, 23, 101–124, 1992. a
Shelef, E. and Hilley, G. E.: A unified framework for modeling landscape evolution by discrete flows, J. Geophys. Res.-Earth, 121, 816–842, https://doi.org/10.1002/2015JF003693, 2016. a
Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C., Levine, D., and Plimpton, S. J.: Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E, 64, 051302, https://doi.org/10.1103/PhysRevE.64.051302, 2001. a
Sklar, L. and Dietrich, W. E.: River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply, Geophysical Monograph-American Geophysical Union, 107, 237–260, 1998. a
Sklar, L. S. and Dietrich, W. E.: A mechanistic model for river incision into bedrock by saltating bed load, Water Resour. Res., 40, W06301, https://doi.org/10.1029/2003WR002496, 2004. a
Tang, H., McGuire, L. A., Rengers, F. K., Kean, J. W., Staley, D. M., and Smith, J. B.: Evolution of debris-flow initiation mechanisms and sediment sources during a sequence of postwildfire rainstorms, J. Geophys. Res.-Earth, 124, 1572–1595, 2019. a
Toro, E. F.: The HLL and HLLC Riemann solvers, in: Riemann solvers and numerical methods for fluid dynamics, Springer, 315–344, https://doi.org/10.1007/b79761, 2009. a
Turowski, J. M.: Alluvial cover controlling the width, slope and sinuosity of bedrock channels, Earth Surf. Dynam., 6, 29–48, https://doi.org/10.5194/esurf-6-29-2018, 2018. a
Turowski, J. M.: Upscaling Sediment-Flux-Dependent Fluvial Bedrock Incision to Long Timescales, J. Geophys. Res.-Earth, 126, e2020JF005880, https://doi.org/10.1029/2020JF005880, 2021. a
Vázquez-Cendón, M. E.: Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, J. Comput. Phys., 148, 497–526, 1999. a
Whipple, K. X. and Dunne, T.: The influence of debris-flow rheology on fan morphology, Owens Valley, California, Geol. Soc. Am. Bull., 104, 887–900, 1992. a
Whipple, K. X., Dibiase, R. A., and Crosby, B.: Bedrock rivers, in: Fluvial Geomorphology, 550–573, Elsevier Inc., https://doi.org/10.1016/B978-0-12-818234-5.00101-2, 2013. a
Short summary
Debris flows are mixtures of mud and rocks that can travel at high speeds across steep landscapes. Here, we propose a new model to describe how landscapes are shaped by debris flow erosion over long timescales. Model results demonstrate that the shapes of channel profiles are sensitive to uplift rate, meaning that it may be possible to use topographic data from steep channel networks to infer how erosion rates vary across a landscape.
Debris flows are mixtures of mud and rocks that can travel at high speeds across steep...