Articles | Volume 13, issue 3
https://doi.org/10.5194/esurf-13-403-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-403-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A fractal framework for channel–hillslope coupling
Benjamin Kargère
CORRESPONDING AUTHOR
Department of Mathematics, Williams College, Williamstown, Massachusetts 01267, USA
Department of Geosciences, Williams College, Williamstown, Massachusetts 01267, USA
José Constantine
Department of Geosciences, Williams College, Williamstown, Massachusetts 01267, USA
Tristram Hales
School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom, CF10 3AT
Stuart Grieve
School of Geography, Queen Mary University of London, London, United Kingdom, E1 4NS
Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom, E1 1HH
Stewart Johnson
Department of Mathematics, Williams College, Williamstown, Massachusetts 01267, USA
Related authors
No articles found.
Jedidiah E. Dale, Sophie Dorosin, José A. Constantine, and Claire C. Masteller
EGUsphere, https://doi.org/10.5194/egusphere-2025-3962, https://doi.org/10.5194/egusphere-2025-3962, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Frequent, low-intensity urban pluvial flooding is notoriously difficult to detect and monitor. This study introduces a novel, low-cost approach using computer vision to integrate time-lapse photos with lidar data to estimate water levels and flood extents. Applied to two case study flood events and validated against a two-dimensional flood model, this method shows how community-centered, adaptable monitoring systems can capture spatiotemporal flood dynamics often missed by traditional methods.
Isabelle Utley, Tristram Hales, Ekbal Hussain, and Xuanmei Fan
Nat. Hazards Earth Syst. Sci., 25, 2699–2716, https://doi.org/10.5194/nhess-25-2699-2025, https://doi.org/10.5194/nhess-25-2699-2025, 2025
Short summary
Short summary
We analysed debris flows in Sichuan, China, using satellite data and simulations to assess check dam efficacy. Our study found that while check dams can mitigate smaller flows, they may increase exposure to extreme events, with up to 40 % of structures in some areas affected. Urban development and reliance on check dams can create a false sense of security, increasing exposure during large debris flows and highlighting the need for risk management and infrastructure planning in hazard-prone areas.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Cited articles
Anand, S. K., Hooshyar, M., and Porporato, A.: Linear layout of multiple flow-direction networks for landscape-evolution simulations, Environ. Model. Softw., 133, 104804, https://doi.org/10.1016/j.envsoft.2020.104804, 2020. a, b
Anand, S. K., Bonetti, S., Camporeale, C., and Porporato, A.: Inception of Regular Valley Spacing in Fluvial Landscapes: A Linear Stability Analysis, J. Geophys. Res.-Earth, 127, e2022JF006716, https://doi.org/10.1029/2022JF006716, 2022. a
Andrews, D. J. and Bucknam, R. C.: Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res.-Sol. Ea., 92, 12857–12867, https://doi.org/10.1029/JB092iB12p12857, 1987. a, b
Andrle, R. and Abrahams, A. D.: Fractal techniques and the surface roughness of talus slopes, Earth Surf. Proc. Land., 14, 197–209, https://doi.org/10.1002/esp.3290140303, 1989. a
Ariza-Villaverde, A. B., Jiménez-Hornero, F. J., and Gutiérrez de Ravé, E.: Influence of DEM resolution on drainage network extraction: A multifractal analysis, Geomorphology, 241, 243–254, https://doi.org/10.1016/j.geomorph.2015.03.040, 2015. a
Bernard, T. G., Davy, P., and Lague, D.: Hydro-Geomorphic Metrics for High Resolution Fluvial Landscape Analysis, J. Geophys. Res.-Earth, 127, e2021JF006535, https://doi.org/10.1029/2021JF006535, 2022. a, b
Bonetti, S., Bragg, A. D., and Porporato, A.: On the theory of drainage area for regular and non-regular points, P. Roy. Soc. A-Math. Phy., 474, 20170693, https://doi.org/10.1098/rspa.2017.0693, 2018. a, b
Bonetti, S., Hooshyar, M., Camporeale, C., and Porporato, A.: Channelization cascade in landscape evolution, P. Natl. Acad. Sci. USA, 117, 1375–1382, https://doi.org/10.1073/pnas.1911817117, 2020. a, b
Bras, R. L., Tucker, G. E., and Teles, V.: Six Myths About Mathematical Modeling in Geomorphology, American Geophysical Union (AGU), ISBN 9781118668559, 63–79, https://doi.org/10.1029/135GM06, 2003. a
Buckingham, E.: On Physically Similar Systems; Illustrations of the Use of Dimensional Equations, Phys. Rev., 4, 345–376, https://doi.org/10.1103/PhysRev.4.345, 1914. a, b
Campforts, B., Schwanghart, W., and Govers, G.: Accurate simulation of transient landscape evolution by eliminating numerical diffusion: the TTLEM 1.0 model, Earth Surf. Dynam., 5, 47–66, https://doi.org/10.5194/esurf-5-47-2017, 2017. a
Costa-Cabral, M. C. and Burges, S. J.: Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas, Water Resour. Res., 30, 1681–1692, https://doi.org/10.1029/93WR03512, 1994. a
Culling, W. E. H.: Analytical Theory of Erosion, J. Geol., 68, 336–344, https://doi.org/10.1086/626663, https://doi.org/10.1086/626663, 1960. a, b, c
Del Vecchio, J., Zwieback, S., Rowland, J. C., DiBiase, R. A., and Palucis, M. C.: Hillslope-Channel Transitions and the Role of Water Tracks in a Changing Permafrost Landscape, J. Geophys. Res.-Earth, 128, e2023JF007156, https://doi.org/10.1029/2023JF007156, 2023. a
Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M., and Roering, J. J.: Geomorphic Transport Laws for Predicting Landscape form and Dynamics, American Geophysical Union (AGU), ISBN 9781118668559, 103–132, https://doi.org/10.1029/135GM09, 2003. a
Dunne, K. B. J. and Jerolmack, D. J.: What sets river width?, Science Advances, 6, eabc1505, https://doi.org/10.1126/sciadv.abc1505, 2020. a
Foufoula-Georgiou, E., Ganti, V., and Dietrich, W. E.: A nonlocal theory of sediment transport on hillslopes, J. Geophys. Res.-Earth, 115, F00A16, https://doi.org/10.1029/2009JF001280, 2010. a
Furbish, D. and Roering, J.: Sediment disentrainment and the concept of local versus nonlocal transport on hillslopes, J. Geophys. Res.-Earth, 118, 937–952, https://doi.org/10.1002/jgrf.20071, 2013. a, b
Gailleton, B., Steer, P., Davy, P., Schwanghart, W., and Bernard, T. G. A.: GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for Landscape Evolution Models, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1239, 2024. a
Gallant, J. C. and Hutchinson, M. F.: A differential equation for specific catchment area, Water Resour. Res., 47, W05535, https://doi.org/10.1029/2009WR008540, 2011. a, b
Ganti, V., Passalacqua, P., and Foufoula-Georgiou, E.: A sub-grid scale closure for nonlinear hillslope sediment transport models, J. Geophys. Res.-Earth, 117, F02012, https://doi.org/10.1029/2011JF002181, 2012. a
Godard, V. and Tucker, G. E.: Influence of Climate-Forcing Frequency on Hillslope Response, Geophys. Res. Lett., 48, e2021GL094305, https://doi.org/10.1029/2021GL094305, 2021. a
Grieve, S. W. D., Mudd, S. M., Milodowski, D. T., Clubb, F. J., and Furbish, D. J.: How does grid-resolution modulate the topographic expression of geomorphic processes?, Earth Surf. Dynam., 4, 627–653, https://doi.org/10.5194/esurf-4-627-2016, 2016. a
Heimsath, A., Dietrich, W., Nishiizumi, K., and Finkel, R.: The Soil Production Function and Landscape Equilibrium, Nature, 388, 358–361, https://doi.org/10.1038/41056, 1997. a
Hergarten, S. and Pietrek, A.: Self-organization of channels and hillslopes in models of fluvial landform evolution and its potential for solving scaling issues, Earth Surf. Dynam., 11, 741–755, https://doi.org/10.5194/esurf-11-741-2023, 2023. a, b, c
Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017. a
Hooshyar, M., Bonetti, S., Singh, A., Foufoula-Georgiou, E., and Porporato, A.: From turbulence to landscapes: Logarithmic mean profiles in bounded complex systems, Phys. Rev. E, 102, 033107, https://doi.org/10.1103/PhysRevE.102.033107, 2020. a
Horton, R. E.: Erosional Development Of Streams And Their Drainage Basins; Hydrophysical Approach To Quantitative Morphology, GSA Bulletin, 56, 275–370, https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2, 1945. a
Howard, A. D.: A detachment-limited model of drainage basin evolution, Water Resour. Res., 30, 2261–2285, https://doi.org/10.1029/94WR00757, 1994. a, b, c, d
Howard, A. D. and Kerby, G.: Channel changes in badlands, GSA Bulletin, 94, 739–752, https://doi.org/10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2, 1983. a, b
Huntley, H.: Dimensional Analysis, Dover Books on Intermediate and Advanced Mathematics, Dover Publications, ISBN 9780486617909, 1967. a
Kargere, B.: A Fractal Framework for Channel-Hillslope Coupling, Zenodo [code], https://doi.org/10.5281/zenodo.13749585, 2025. a
La Barbera, P. and Rosso, R.: On the fractal dimension of stream networks, Water Resour. Res., 25, 735–741, https://doi.org/10.1029/WR025i004p00735, 1989. a
Lague, D.: The stream power river incision model: evidence, theory and beyond, Earth Surf. Proc. Land., 39, 38–61, https://doi.org/10.1002/esp.3462, 2014. a
Leopold, L. B. and Maddock, T.: The hydraulic geometry of stream channels and some physiographic implications, U.S. Government Printing Office, Report 252, https://doi.org/10.3133/pp252, 1953. a, b, c
Litwin, D., Tucker, G. E., Barnhart, K. R., and Harman, C.: Reply to Comment by Anand et al. on “Groundwater Affects the Geomorphic and Hydrologic Properties of Coevolved Landscapes”, J. Geophys. Res.-Earth, 127, e2022JF006722, https://doi.org/10.1029/2022JF006722, 2022a. a
McGuire, L. A., McCoy, S. W., Marc, O., Struble, W., and Barnhart, K. R.: Steady-state forms of channel profiles shaped by debris flow and fluvial processes, Earth Surf. Dynam., 11, 1117–1143, https://doi.org/10.5194/esurf-11-1117-2023, 2023. a, b
McKean, J. A., Dietrich, W. E., Finkel, R. C., Southon, J. R., and Caffee, M. W.: Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile, Geology, 21, 343, 343–346, https://doi.org/10.1130/0091-7613(1993)021<0343:QOSPAD>2.3.CO;2, 1993. a
Montgomery, D. R. and Dietrich, W. E.: Channel Initiation and the Problem of Landscape Scale, Science, 255, 826–830, https://doi.org/10.1126/science.255.5046.826, 1992. a, b, c
Montgomery, D. R. and Foufoula-Georgiou, E.: Channel network source representation using digital elevation models, Water Resour. Res., 29, 3925–3934, https://doi.org/10.1029/93WR02463, 1993. a, b, c
Neely, A. B. and DiBiase, R. A.: Sediment controls on the transition from debris flow to fluvial channels in steep mountain ranges, Earth Surf. Proc. Land., 48, 1342–1361, https://doi.org/10.1002/esp.5553, 2023. a
Pelletier, J. D.: A robust, two-parameter method for the extraction of drainage networks from high-resolution digital elevation models (DEMs): Evaluation using synthetic and real-world DEMs, Water Resour. Res., 49, 75–89, https://doi.org/10.1029/2012WR012452, 2013. a, b, c
Perron, J. T., Kirchner, J. W., and Dietrich, W. E.: Formation of evenly spaced ridges and valleys, Nature, 460, 502–505, https://doi.org/10.1038/nature08174, 2009. a, b
Rinaldo, A., Rodriguez-Iturbe, I., and Rigon, R.: CHANNEL NETWORKS, Annu. Rev. Earth Pl. Sc., 26, 289–327, https://doi.org/10.1146/annurev.earth.26.1.289, 1998. a
Roering, J. J.: How well can hillslope evolution models “explain” topography? Simulating soil transport and production with high-resolution topographic data, GSA Bulletin, 120, 1248–1262, https://doi.org/10.1130/B26283.1, 2008. a, b
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resour. Res., 35, 853–870, https://doi.org/10.1029/1998WR900090, 1999. a, b, c, d
Roering, J. J., Perron, J. T., and Kirchner, J. W.: Functional relationships between denudation and hillslope form and relief, Earth Planet. Sc. Lett., 264, 245–258, https://doi.org/10.1016/j.epsl.2007.09.035, 2007. a, b, c, d
Sangireddy, H., Stark, C. P., and Passalacqua, P.: Multiresolution analysis of characteristic length scales with high-resolution topographic data, J. Geophys. Res.-Earth, 122, 1296–1324, https://doi.org/10.1002/2015JF003788, 2017. a
Smith, T. R. and Bretherton, F. P.: Stability and the conservation of mass in drainage basin evolution, Water Resour. Res., 8, 1506–1529, https://doi.org/10.1029/WR008i006p01506, 1972. a
Stock, J. D. and Dietrich, W. E.: Erosion of steepland valleys by debris flows, GSA Bulletin, 118, 1125–1148, https://doi.org/10.1130/B25902.1, 2006. a
Struble, W. T., McGuire, L. A., McCoy, S. W., Barnhart, K. R., and Marc, O.: Debris-Flow Process Controls on Steepland Morphology in the San Gabriel Mountains, California, J. Geophys. Res.-Earth, 128, e2022JF007017, https://doi.org/10.1029/2022JF007017, 2023. a
Sweeney, K. E., Roering, J. J., and Ellis, C.: Experimental evidence for hillslope control of landscape scale, Science, 349, 51–53, https://doi.org/10.1126/science.aab0017, 2015. a
Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I.: The fractal nature of river networks, Water Resour. Res., 24, 1317–1322, https://doi.org/10.1029/WR024i008p01317, 1988. a, b, c, d
Theodoratos, N. and Kirchner, J. W.: Dimensional analysis of a landscape evolution model with incision threshold, Earth Surf. Dynam., 8, 505–526, https://doi.org/10.5194/esurf-8-505-2020, 2020. a
Tucker, G. E. and Bras, R. L.: Hillslope processes, drainage density, and landscape morphology, Water Resour. Res., 34, 2751–2764, https://doi.org/10.1029/98WR01474, 1998. a, b, c
Tucker, G. E. and Hancock, G. R.: Modelling landscape evolution, Earth Surf. Proc. Land., 35, 28–50, https://doi.org/10.1002/esp.1952, 2010. a, b
Willgoose, G., Bras, R., and Rodriguez-Iturbe, I.: A coupled channel network growth and hillslope evolution model: 1. Theory, Water Resour. Res., 27, 1671–1684, https://doi.org/10.1029/91WR00935, 1991a. a, b
Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I.: A coupled channel network growth and hillslope evolution model: 2. Nondimensionalization and applications, Water Resour. Res., 27, 1685–1696, https://doi.org/10.1029/91WR00936, 1991b. a
Short summary
In this study, we analyze contributing drainage regions, a proxy for discharge in channel–hillslope coupling using landscape evolution models. We present a fractal framework which reveals that drainage area is not well defined for steady-state unchannelized locations. This clarifies the interaction between geomorphic parameters and grid resolution, furthering our understanding of channel–hillslope interactions in both computational and real-world settings.
In this study, we analyze contributing drainage regions, a proxy for discharge in...