Articles | Volume 13, issue 3
https://doi.org/10.5194/esurf-13-403-2025
https://doi.org/10.5194/esurf-13-403-2025
Research article
 | 
19 May 2025
Research article |  | 19 May 2025

A fractal framework for channel–hillslope coupling

Benjamin Kargère, José Constantine, Tristram Hales, Stuart Grieve, and Stewart Johnson

Related authors

Transformations in Exposure to Debris Flows in Post-Earthquake Sichuan, China
Isabelle Utley, Tristram Hales, Ekbal Hussain, and Xuanmei Fan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2277,https://doi.org/10.5194/egusphere-2024-2277, 2024
Short summary
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023,https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
The impact of earthquakes on orogen-scale exhumation
Oliver R. Francis, Tristram C. Hales, Daniel E. J. Hobley, Xuanmei Fan, Alexander J. Horton, Gianvito Scaringi, and Runqiu Huang
Earth Surf. Dynam., 8, 579–593, https://doi.org/10.5194/esurf-8-579-2020,https://doi.org/10.5194/esurf-8-579-2020, 2020
Short summary
Spatial prediction of earthquake-induced landslide probability
Robert N. Parker, Nicholas J. Rosser, and Tristram C. Hales
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-193,https://doi.org/10.5194/nhess-2017-193, 2017
Revised manuscript has not been submitted
Short summary
The CAIRN method: automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations
Simon Marius Mudd, Marie-Alice Harel, Martin D. Hurst, Stuart W. D. Grieve, and Shasta M. Marrero
Earth Surf. Dynam., 4, 655–674, https://doi.org/10.5194/esurf-4-655-2016,https://doi.org/10.5194/esurf-4-655-2016, 2016
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
Hillslope diffusion and channel steepness in landscape evolution models
David G. Litwin, Luca C. Malatesta, and Leonard S. Sklar
Earth Surf. Dynam., 13, 277–293, https://doi.org/10.5194/esurf-13-277-2025,https://doi.org/10.5194/esurf-13-277-2025, 2025
Short summary
Modeling memory in gravel-bed rivers: A flow history-dependent relation for evolving thresholds of motion
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3250,https://doi.org/10.5194/egusphere-2024-3250, 2024
Short summary
Channel concavity controls planform complexity of branching drainage networks
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024,https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary
Knickpoints and fixed points: the evolution of fluvial morphology under the combined effect of fault uplift and dam obstruction on a soft bedrock river
Hung-En Chen, Yen-Yu Chiu, Chih-Yuan Cheng, and Su-Chin Chen
Earth Surf. Dynam., 12, 1329–1346, https://doi.org/10.5194/esurf-12-1329-2024,https://doi.org/10.5194/esurf-12-1329-2024, 2024
Short summary
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024,https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary

Cited articles

Anand, S. K., Hooshyar, M., and Porporato, A.: Linear layout of multiple flow-direction networks for landscape-evolution simulations, Environ. Model. Softw., 133, 104804, https://doi.org/10.1016/j.envsoft.2020.104804, 2020. a, b
Anand, S. K., Bonetti, S., Camporeale, C., and Porporato, A.: Inception of Regular Valley Spacing in Fluvial Landscapes: A Linear Stability Analysis, J. Geophys. Res.-Earth, 127, e2022JF006716, https://doi.org/10.1029/2022JF006716, 2022. a
Anand, S. K., Bertagni, M. B., Drivas, T. D., and Porporato, A.: Self-similarity and vanishing diffusion in fluvial landscapes, P. Natl. Acad. Sci. USA, 120, e2302401120, https://doi.org/10.1073/pnas.2302401120, 2023. a, b, c, d, e
Andrews, D. J. and Bucknam, R. C.: Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res.-Sol. Ea., 92, 12857–12867, https://doi.org/10.1029/JB092iB12p12857, 1987. a, b
Andrle, R. and Abrahams, A. D.: Fractal techniques and the surface roughness of talus slopes, Earth Surf. Proc. Land., 14, 197–209, https://doi.org/10.1002/esp.3290140303, 1989. a
Download
Short summary
In this study, we analyze contributing drainage regions, a proxy for discharge in channel–hillslope coupling using landscape evolution models. We present a fractal framework which reveals that drainage area is not well defined for steady-state unchannelized locations. This clarifies the interaction between geomorphic parameters and grid resolution, furthering our understanding of channel–hillslope interactions in both computational and real-world settings.
Share