Articles | Volume 6, issue 1
https://doi.org/10.5194/esurf-6-77-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esurf-6-77-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Numerical modelling of landscape and sediment flux response to precipitation rate change
Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, Paris, France
Alexander C. Whittaker
Department of Earth Science and Engineering, Imperial College London, London, UK
Mustapha Zakari
Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, Paris, France
Benjamin Campforts
Division Geography, Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
Related authors
John J. Armitage and Sébastien Rohais
EGUsphere, https://doi.org/10.21203/rs.3.rs-3696866/v2, https://doi.org/10.21203/rs.3.rs-3696866/v2, 2024
Short summary
Short summary
Rivers transport microplastic pollution from its source to its eventual marine sink. Rivers are not simple conveyor belts of this pollution. Microplastic will become entrained within the sediments, becoming part of the river catchment environment. We develop a reduced complexity model to capture the transport and deposition of microplastic. By comparing our model to observations from the Têt River, France, we find that large quantities of microplastic must be stored within the river sediments.
John J. Armitage
Earth Surf. Dynam., 7, 67–75, https://doi.org/10.5194/esurf-7-67-2019, https://doi.org/10.5194/esurf-7-67-2019, 2019
Short summary
Short summary
Landscape evolution models (LEMs) aim to capture an aggregation of the processes of erosion and deposition and predict evolving topography. A key aspect of any LEM is how water is chosen to be routed down the surface, which can impact the model results and, importantly, the numerical accuracy. I find that by treating flow as lines within the model domain and by distributing water down all slopes, the results are independent of resolution, pointing to a new method to model landscape evolution.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
John J. Armitage and Sébastien Rohais
EGUsphere, https://doi.org/10.21203/rs.3.rs-3696866/v2, https://doi.org/10.21203/rs.3.rs-3696866/v2, 2024
Short summary
Short summary
Rivers transport microplastic pollution from its source to its eventual marine sink. Rivers are not simple conveyor belts of this pollution. Microplastic will become entrained within the sediments, becoming part of the river catchment environment. We develop a reduced complexity model to capture the transport and deposition of microplastic. By comparing our model to observations from the Têt River, France, we find that large quantities of microplastic must be stored within the river sediments.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Tian Gan, Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Irina Overeem, Albert J. Kettner, Benjamin Campforts, Julia M. Moriarty, Brianna Undzis, Ethan Pierce, and Lynn McCready
Geosci. Model Dev., 17, 2165–2185, https://doi.org/10.5194/gmd-17-2165-2024, https://doi.org/10.5194/gmd-17-2165-2024, 2024
Short summary
Short summary
This study presents the design, implementation, and application of the CSDMS Data Components. The case studies demonstrate that the Data Components provide a consistent way to access heterogeneous datasets from multiple sources, and to seamlessly integrate them with various models for Earth surface process modeling. The Data Components support the creation of open data–model integration workflows to improve the research transparency and reproducibility.
Ariel Henrique do Prado, David Mair, Philippos Garefalakis, Chantal Schmidt, Alexander Whittaker, Sebastien Castelltort, and Fritz Schlunegger
Hydrol. Earth Syst. Sci., 28, 1173–1190, https://doi.org/10.5194/hess-28-1173-2024, https://doi.org/10.5194/hess-28-1173-2024, 2024
Short summary
Short summary
Engineering structures known as check dams are built with the intention of managing streams. The effectiveness of such structures can be expressed by quantifying the reduction of the sediment flux after their implementation. In this contribution, we estimate and compare the volumes of sediment transported in a mountain stream for engineered and non-engineered conditions. We found that without check dams the mean sediment flux would be ca. 10 times larger in comparison with the current situation.
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, and Sebastien Castelltort
EGUsphere, https://doi.org/10.5194/egusphere-2024-351, https://doi.org/10.5194/egusphere-2024-351, 2024
Short summary
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a landscape evolution model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, https://doi.org/10.5194/esurf-10-209-2022, 2022
Short summary
Short summary
Obtaining accurate information on the volume of geomorphic features typically requires high-resolution topographic data, which are often not available. Here, we show that the globally available 12 m TanDEM-X DEM can be used to accurately estimate gully volumes and establish an area–volume relationship after applying a correction. This allowed us to get a first estimate of the amount of sediment that has been mobilized by large gullies (lavaka) in central Madagascar over the past 70 years.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Arthur Depicker, Gerard Govers, Liesbet Jacobs, Benjamin Campforts, Judith Uwihirwe, and Olivier Dewitte
Earth Surf. Dynam., 9, 445–462, https://doi.org/10.5194/esurf-9-445-2021, https://doi.org/10.5194/esurf-9-445-2021, 2021
Short summary
Short summary
We investigated how shallow landslide occurrence is impacted by deforestation and rifting in the North Tanganyika–Kivu rift region (Africa). We developed a new approach to calculate landslide erosion rates based on an inventory compiled in biased © Google Earth imagery. We find that deforestation increases landslide erosion by a factor of 2–8 and for a period of roughly 15 years. However, the exact impact of deforestation depends on the geomorphic context of the landscape (rejuvenated/relict).
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020, https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Short summary
Landslides shape the Earth’s surface and are a dominant source of terrestrial sediment. Rivers, then, act as conveyor belts evacuating landslide-produced sediment. Understanding the interaction among rivers and landslides is important to predict the Earth’s surface response to past and future environmental changes and for mitigating natural hazards. We develop HyLands, a new numerical model that provides a toolbox to explore how landslides and rivers interact over several timescales.
Benjamin Campforts, Veerle Vanacker, Frédéric Herman, Matthias Vanmaercke, Wolfgang Schwanghart, Gustavo E. Tenorio, Patrick Willems, and Gerard Govers
Earth Surf. Dynam., 8, 447–470, https://doi.org/10.5194/esurf-8-447-2020, https://doi.org/10.5194/esurf-8-447-2020, 2020
Short summary
Short summary
In this contribution, we explore the spatial determinants of bedrock river incision in the tropical Andes. The model results illustrate the problem of confounding between climatic and lithological variables, such as rock strength. Incorporating rock strength explicitly into river incision models strongly improves the explanatory power of all tested models and enables us to clarify the role of rainfall variability in controlling river incision rates.
John J. Armitage
Earth Surf. Dynam., 7, 67–75, https://doi.org/10.5194/esurf-7-67-2019, https://doi.org/10.5194/esurf-7-67-2019, 2019
Short summary
Short summary
Landscape evolution models (LEMs) aim to capture an aggregation of the processes of erosion and deposition and predict evolving topography. A key aspect of any LEM is how water is chosen to be routed down the surface, which can impact the model results and, importantly, the numerical accuracy. I find that by treating flow as lines within the model domain and by distributing water down all slopes, the results are independent of resolution, pointing to a new method to model landscape evolution.
Benjamin Campforts, Wolfgang Schwanghart, and Gerard Govers
Earth Surf. Dynam., 5, 47–66, https://doi.org/10.5194/esurf-5-47-2017, https://doi.org/10.5194/esurf-5-47-2017, 2017
Short summary
Short summary
Despite a growing interest in landscape evolution models, accuracy assessment of the numerical methods they are based on has received little attention. We test a higher-order flux-limiting finite-volume method to simulate river incision and tectonic displacement. We show that this scheme significantly influences the evolution of simulated landscapes and the spatial and temporal variability of erosion rates. Moreover, it allows for the simulation of lateral tectonic displacement on a fixed grid.
Related subject area
Physical: Landscape Evolution: modelling and field studies
Channel concavity controls planform complexity of branching drainage networks
Knickpoints and fixed points: the evolution of fluvial morphology under the combined effect of fault uplift and dam obstruction on a soft bedrock river
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Short Communication: Numerically simulated time to steady state is not a reliable measure of landscape response time
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Drainage rearrangement in an intra-continental mountain belt: a case study from the central South Tian Shan, Kyrgyzstan
Flexural isostatic response of continental-scale deltas to climatically driven sea level changes
Scaling between volume and runout of rock avalanches explained by a modified Voellmy rheology
Past anthropogenic land use change caused a regime shift of the fluvial response to Holocene climate change in the Chinese Loess Plateau
Steady-state forms of channel profiles shaped by debris flow and fluvial processes
Refining patterns of melt with forward stratigraphic models of stable Pleistocene coastlines
Optimising global landscape evolution models with 10Be
Self-organization of channels and hillslopes in models of fluvial landform evolution and its potential for solving scaling issues
Stream laws in analog tectonic-landscape models
A control volume finite-element model for predicting the morphology of cohesive-frictional debris flow deposits
Erosion and weathering in carbonate regions reveal climatic and tectonic drivers of carbonate landscape evolution
Patterns and rates of soil movement and shallow failures across several small watersheds on the Seward Peninsula, Alaska
River incision, 10Be production and transport in a source-to-sink sediment system (Var catchment, SW Alps)
Simulating the effect of subsurface drainage on the thermal regime and ground ice in blocky terrain in Norway
An experimental study of drainage network development by surface and subsurface flow in low-gradient landscapes
The push and pull of abandoned channels: how floodplain processes and healing affect avulsion dynamics and alluvial landscape evolution in foreland basins
Climate changes and the formation of fluvial terraces in central Amazonia inferred from landscape evolution modeling
Investigation of stochastic-threshold incision models across a climatic and morphological gradient
Comparing the transport-limited and ξ–q models for sediment transport
Autogenic knickpoints in laboratory landscape experiments
Transmissivity and groundwater flow exert a strong influence on drainage density
Graphically interpreting how incision thresholds influence topographic and scaling properties of modeled landscapes
Escarpment retreat rates derived from detrital cosmogenic nuclide concentrations
Hilltop curvature as a proxy for erosion rate: wavelets enable rapid computation and reveal systematic underestimation
Short communication: Analytical models for 2D landscape evolution
Effect of rock uplift and Milankovitch timescale variations in precipitation and vegetation cover on catchment erosion rates
Modeling glacial and fluvial landform evolution at large scales using a stream-power approach
Topographic disequilibrium, landscape dynamics and active tectonics: an example from the Bhutan Himalaya
Last-glacial-cycle glacier erosion potential in the Alps
The rate and extent of wind-gap migration regulated by tributary confluences and avulsions
Inferring potential landslide damming using slope stability, geomorphic constraints, and run-out analysis: a case study from the NW Himalaya
Groundwater erosion of coastal gullies along the Canterbury coast (New Zealand): a rapid and episodic process controlled by rainfall intensity and substrate variability
Erosional response of granular material in landscape models
Transport-limited fluvial erosion – simple formulation and efficient numerical treatment
Dimensional analysis of a landscape evolution model with incision threshold
Computing water flow through complex landscapes – Part 2: Finding hierarchies in depressions and morphological segmentations
Rivers as linear elements in landform evolution models
Interactions between main channels and tributary alluvial fans: channel adjustments and sediment-signal propagation
Drainage divide networks – Part 1: Identification and ordering in digital elevation models
Drainage divide networks – Part 2: Response to perturbations
Hillslope denudation and morphologic response to a rock uplift gradient
Geomorphic signatures of the transient fluvial response to tilting
The destiny of orogen-parallel streams in the Eastern Alps: the Salzach–Enns drainage system
Statistical modelling of co-seismic knickpoint formation and river response to fault slip
A versatile, linear complexity algorithm for flow routing in topographies with depressions
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024, https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary
Short summary
To explore the pattern formed by rivers as they crisscross the land, we developed a way to measure how these patterns vary, from straight to complex, winding paths. We discovered that a river's degree of complexity depends on how the river slope changes downstream. Although this is strange (i.e., why would changes in slope affect twists of a river in map view?), we show that this dependency is almost inevitable and that the complexity could signify how arid the climate is or used to be.
Hung-En Chen, Yen-Yu Chiu, Chih-Yuan Cheng, and Su-Chin Chen
Earth Surf. Dynam., 12, 1329–1346, https://doi.org/10.5194/esurf-12-1329-2024, https://doi.org/10.5194/esurf-12-1329-2024, 2024
Short summary
Short summary
This study explores the fluvial morphology evolution in three rivers in Taiwan caused by natural tectonic movements (the 1999 Mw 7.6 Chi-Chi earthquake) and human-made structures (dams). Knickpoints resulting from riverbed uplift shift, leading to gradual evolution from instability to equilibrium. Dams, on the other hand, cause continuous degradation of the bed. When both effects exist on a reach, the impact of the knickpoint gradually fades away, but the effects of the dam on the river persist.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024, https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations that describe surface water flow. Using quantitative data on rainfall and elevation, GraphFlood calculates river width and depth and approximates erosive power, making it a suitable tool for large-scale hazard management and understanding the relationship between rivers and mountains.
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024, https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Short summary
The time it takes for a landscape to adjust to new environmental conditions is critical for understanding the impacts of past and future environmental changes. We used different computational models and methods and found that predicted times for a landscape to reach a stable condition vary greatly. Our results illustrate that reporting how timescales are measured is important. Modelers should ensure that the measurement technique addresses the question.
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024, https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
Short summary
Toma hills are relatively isolated hills found in the deposits of rock avalanches, and their origin is still enigmatic. This paper presents the results of numerical simulations based on a modified version of a friction law that was originally introduced for snow avalanches. The model produces more or less isolated hills (which look much like toma hills) on the valley floor. The results provide, perhaps, the first explanation of the occurrence of toma hills based on a numerical model.
Lingxiao Gong, Peter van der Beek, Taylor F. Schildgen, Edward R. Sobel, Simone Racano, Apolline Mariotti, and Fergus McNab
Earth Surf. Dynam., 12, 973–994, https://doi.org/10.5194/esurf-12-973-2024, https://doi.org/10.5194/esurf-12-973-2024, 2024
Short summary
Short summary
We choose the large Saryjaz river from South Tian Shan to analyse topographic and fluvial metrics. By quantifying the spatial distribution of major metrics and comparing with modelling patterns, we suggest that the observed transience was triggered by a big capture event during the Plio-Pleistocene and potentially affected by both tectonic and climate factors. This conclusion underlines the importance of local contingent factors in driving drainage development.
Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, and Louis Moresi
Earth Surf. Dynam., 12, 301–320, https://doi.org/10.5194/esurf-12-301-2024, https://doi.org/10.5194/esurf-12-301-2024, 2024
Short summary
Short summary
Two-thirds of the world's most populated cities are situated close to deltas. We use computer simulations to understand how deltas sink or rise in response to climate-driven sea level changes that operate from thousands to millions of years. Our research shows that because of the interaction between the outer layers of the Earth, sediment transport, and sea level changes deltas develop a self-regulated mechanism that modifies the space they need to gain or lose land.
Stefan Hergarten
Earth Surf. Dynam., 12, 219–229, https://doi.org/10.5194/esurf-12-219-2024, https://doi.org/10.5194/esurf-12-219-2024, 2024
Short summary
Short summary
Large landslides turn into an avalanche-like mode of flow at high velocities, which allows for a much longer runout than predicted for a sliding solid body. In this study, the Voellmy rheology widely used in models for hazard assessment is reinterpreted and extended. The new approach predicts the increase in runout length with volume observed in nature quite well and may thus be a major step towards a more consistent modeling of rock avalanches and improved hazard assessment.
Hao Chen, Xianyan Wang, Yanyan Yu, Huayu Lu, and Ronald Van Balen
Earth Surf. Dynam., 12, 163–180, https://doi.org/10.5194/esurf-12-163-2024, https://doi.org/10.5194/esurf-12-163-2024, 2024
Short summary
Short summary
The Wei River catchment, one of the centers of the agricultural revolution in China, has experienced intense land use changes since 6000 BCE. This makes it an ideal place to study the response of river systems to anthropogenic land use change. Modeling results show the sensitivity of discharge and sediment yield to climate change increased abruptly when the agricultural land area exceeded a threshold at around 1000 BCE. This regime shift in the fluvial catchment led to a large sediment pulse.
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam., 11, 1117–1143, https://doi.org/10.5194/esurf-11-1117-2023, https://doi.org/10.5194/esurf-11-1117-2023, 2023
Short summary
Short summary
Debris flows are mixtures of mud and rocks that can travel at high speeds across steep landscapes. Here, we propose a new model to describe how landscapes are shaped by debris flow erosion over long timescales. Model results demonstrate that the shapes of channel profiles are sensitive to uplift rate, meaning that it may be possible to use topographic data from steep channel networks to infer how erosion rates vary across a landscape.
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023, https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Gregory A. Ruetenik, John D. Jansen, Pedro Val, and Lotta Ylä-Mella
Earth Surf. Dynam., 11, 865–880, https://doi.org/10.5194/esurf-11-865-2023, https://doi.org/10.5194/esurf-11-865-2023, 2023
Short summary
Short summary
We compare models of erosion against a global compilation of long-term erosion rates in order to find and interpret best-fit parameters using an iterative search. We find global signals among exponents which control the relationship between erosion rate and slope, as well as other parameters which are common in long-term erosion modelling. Finally, we analyse the global variability in parameters and find a correlation between precipitation and coefficients for optimised models.
Stefan Hergarten and Alexa Pietrek
Earth Surf. Dynam., 11, 741–755, https://doi.org/10.5194/esurf-11-741-2023, https://doi.org/10.5194/esurf-11-741-2023, 2023
Short summary
Short summary
The transition from hillslopes to channelized flow is typically attributed to a threshold catchment size in landform evolution models. Here we propose an alternative concept directly based on topography. Using this concept, channels and hillslopes self-organize, whereby the catchment size of the channel heads varies over some range. Our numerical results suggest that this concept works better than the established idea of a strict threshold catchment size.
Riccardo Reitano, Romano Clementucci, Ethan M. Conrad, Fabio Corbi, Riccardo Lanari, Claudio Faccenna, and Chiara Bazzucchi
Earth Surf. Dynam., 11, 731–740, https://doi.org/10.5194/esurf-11-731-2023, https://doi.org/10.5194/esurf-11-731-2023, 2023
Short summary
Short summary
Tectonics and surface processes work together in shaping orogens through their evolution. Laboratory models are used to overcome some limitations of direct observations since they allow for continuous and detailed analysis of analog orogens. We use a rectangular box filled with an analog material made of granular materials to study how erosional laws apply and how erosion affects the analog landscape as a function of the applied boundary conditions (regional slope and rainfall rate).
Tzu-Yin Kasha Chen, Ying-Chen Wu, Chi-Yao Hung, Hervé Capart, and Vaughan R. Voller
Earth Surf. Dynam., 11, 325–342, https://doi.org/10.5194/esurf-11-325-2023, https://doi.org/10.5194/esurf-11-325-2023, 2023
Short summary
Short summary
Predicting the extent and thickness of debris flow deposits is important for assessing and mitigating hazards. We propose a simplified mass balance model for predicting the morphology of terminated debris flows depositing over complex topography. A key element in this model is that the termination of flow of the deposit is determined by prescribed values of yield stress and friction angle. The model results are consistent with available analytical solutions and field and laboratory observations.
Richard Ott, Sean F. Gallen, and David Helman
Earth Surf. Dynam., 11, 247–257, https://doi.org/10.5194/esurf-11-247-2023, https://doi.org/10.5194/esurf-11-247-2023, 2023
Short summary
Short summary
We compile data on carbonate denudation, the sum of mechanical erosion and chemical weathering, from cosmogenic nuclides and use them in conjunction with weathering data to constrain the partitioning of denudation into erosion and weathering. We show how carbonate erosion and weathering respond to different climatic and tectonic conditions and find that variations in denudation partitioning can be used to explain the vastly different morphology of carbonate landscapes on Earth.
Joanmarie Del Vecchio, Emma R. Lathrop, Julian B. Dann, Christian G. Andresen, Adam D. Collins, Michael M. Fratkin, Simon Zwieback, Rachel C. Glade, and Joel C. Rowland
Earth Surf. Dynam., 11, 227–245, https://doi.org/10.5194/esurf-11-227-2023, https://doi.org/10.5194/esurf-11-227-2023, 2023
Short summary
Short summary
In cold regions of the Earth, thawing permafrost can change the landscape, impact ecosystems, and lead to the release of greenhouse gases. In this study we used many observational tools to better understand how sediment moves on permafrost hillslopes. Some topographic change conforms to our understanding of slope stability and sediment transport as developed in temperate landscapes, but much of what we observed needs further explanation by permafrost-specific geomorphic models.
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023, https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Short summary
We present new tools in the landscape evolution model Badlands to simulate 10Be production, erosion and transport. These tools are applied to a source-to-sink system in the SW French Alps, where the model is calibrated. We propose a model that fits river incision rates and 10Be concentrations in sediments, and we show that 10Be in deep marine sediments is a signal with multiple contributions that cannot be easily interpreted in terms of climate forcing.
Cas Renette, Kristoffer Aalstad, Juditha Aga, Robin Benjamin Zweigel, Bernd Etzelmüller, Karianne Staalesen Lilleøren, Ketil Isaksen, and Sebastian Westermann
Earth Surf. Dynam., 11, 33–50, https://doi.org/10.5194/esurf-11-33-2023, https://doi.org/10.5194/esurf-11-33-2023, 2023
Short summary
Short summary
One of the reasons for lower ground temperatures in coarse, blocky terrain is a low or varying soil moisture content, which most permafrost modelling studies did not take into account. We used the CryoGrid community model to successfully simulate this effect and found markedly lower temperatures in well-drained, blocky deposits compared to other set-ups. The inclusion of this drainage effect is another step towards a better model representation of blocky mountain terrain in permafrost regions.
Brian G. Sockness and Karen B. Gran
Earth Surf. Dynam., 10, 581–603, https://doi.org/10.5194/esurf-10-581-2022, https://doi.org/10.5194/esurf-10-581-2022, 2022
Short summary
Short summary
To study channel network development following continental glaciation, we ran small physical experiments where networks slowly expanded into flat surfaces. By changing substrate and rainfall, we altered flow pathways between surface and subsurface. Initially, most channels grew by overland flow. As relief increased, erosion through groundwater sapping occurred, especially in runs with high infiltration and low cohesion, highlighting the importance of groundwater in channel network evolution.
Harrison K. Martin and Douglas A. Edmonds
Earth Surf. Dynam., 10, 555–579, https://doi.org/10.5194/esurf-10-555-2022, https://doi.org/10.5194/esurf-10-555-2022, 2022
Short summary
Short summary
River avulsions (rivers suddenly changing course) redirect water and sediment. These floods can harm people and control how some landscapes evolve. We model how abandoned channels from older avulsions affect where, when, and why future avulsions occur in mountain-front areas. We show that abandoned channels can push and pull avulsions, and the way they heal controls landscapes. Avulsion models should include abandoned channels; we also highlight opportunities for future field workers.
Ariel Henrique do Prado, Renato Paes de Almeida, Cristiano Padalino Galeazzi, Victor Sacek, and Fritz Schlunegger
Earth Surf. Dynam., 10, 457–471, https://doi.org/10.5194/esurf-10-457-2022, https://doi.org/10.5194/esurf-10-457-2022, 2022
Short summary
Short summary
Our work is focused on describing how and why the terrace levels of central Amazonia were formed during the last 100 000 years. We propose to address this question through a landscape evolution numerical model. Our results show that terrace levels at lower elevation were established in response to dry–wet climate changes and the older terrace levels at higher elevations most likely formed in response to a previously higher elevation of the regional base level.
Clément Desormeaux, Vincent Godard, Dimitri Lague, Guillaume Duclaux, Jules Fleury, Lucilla Benedetti, Olivier Bellier, and the ASTER Team
Earth Surf. Dynam., 10, 473–492, https://doi.org/10.5194/esurf-10-473-2022, https://doi.org/10.5194/esurf-10-473-2022, 2022
Short summary
Short summary
Landscape evolution is highly dependent on climatic parameters, and the occurrence of intense precipitation events is considered to be an important driver of river incision. We compare the rate of erosion with the variability of river discharge in a mountainous landscape of SE France where high-magnitude floods regularly occur. Our study highlights the importance of the hypotheses made regarding the threshold that river discharge needs to exceed in order to effectively cut down into the bedrock.
Jean Braun
Earth Surf. Dynam., 10, 301–327, https://doi.org/10.5194/esurf-10-301-2022, https://doi.org/10.5194/esurf-10-301-2022, 2022
Short summary
Short summary
By comparing two models for the transport of sediment, we find that they share a similar steady-state solution that adequately predicts the shape of most depositional systems made of a fan and an alluvial plain. The length of the fan is controlled by the size of the mountain drainage area feeding the sedimentary system and its slope by the incoming sedimentary flux. We show that the models differ in their transient behavior to external forcing and are characterized by different response times.
Léopold de Lavaissière, Stéphane Bonnet, Anne Guyez, and Philippe Davy
Earth Surf. Dynam., 10, 229–246, https://doi.org/10.5194/esurf-10-229-2022, https://doi.org/10.5194/esurf-10-229-2022, 2022
Short summary
Short summary
Rivers are known to record changes in tectonic or climatic variation through long adjustment of their longitudinal profile slope. Here we describe such adjustments in experimental landscapes and show that they may result from the sole effect of intrinsic geomorphic processes. We propose a new model of river evolution that links long profile adjustment to cycles of river widening and narrowing. This result emphasizes the need to better understand control of lateral erosion on river width.
Elco Luijendijk
Earth Surf. Dynam., 10, 1–22, https://doi.org/10.5194/esurf-10-1-2022, https://doi.org/10.5194/esurf-10-1-2022, 2022
Short summary
Short summary
The distance between rivers is a noticeable feature of the Earth's surface. Previous work has indicated that subsurface groundwater flow may be important for drainage density. Here, I present a new model that combines subsurface and surface water flow and erosion, and demonstrates that groundwater exerts an important control on drainage density. Streams that incise rapidly can capture the groundwater discharge of adjacent streams, which may cause these streams to become dry and stop incising.
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 9, 1545–1561, https://doi.org/10.5194/esurf-9-1545-2021, https://doi.org/10.5194/esurf-9-1545-2021, 2021
Short summary
Short summary
We examine stream-power incision and linear diffusion landscape evolution models with and without incision thresholds. We present a steady-state relationship between curvature and the steepness index, which plots as a straight line. We view this line as a counterpart to the slope–area relationship for the case of landscapes with hillslope diffusion. We show that simple shifts and rotations of this line graphically express the topographic response of landscapes to changes in model parameters.
Yanyan Wang and Sean D. Willett
Earth Surf. Dynam., 9, 1301–1322, https://doi.org/10.5194/esurf-9-1301-2021, https://doi.org/10.5194/esurf-9-1301-2021, 2021
Short summary
Short summary
Although great escarpment mountain ranges are characterized by high relief, modern erosion rates suggest slow rates of landscape change. We question this interpretation by presenting a new method for interpreting concentrations of cosmogenic isotopes. Our analysis shows that erosion has localized onto an escarpment face, driving retreat of the escarpment at high rates. Our quantification of this retreat rate rationalizes the high-relief, dramatic landscape with the rates of geomorphic change.
William T. Struble and Joshua J. Roering
Earth Surf. Dynam., 9, 1279–1300, https://doi.org/10.5194/esurf-9-1279-2021, https://doi.org/10.5194/esurf-9-1279-2021, 2021
Short summary
Short summary
We used a mathematical technique known as a wavelet transform to calculate the curvature of hilltops in western Oregon, which we used to estimate erosion rate. We find that this technique operates over 1000 times faster than other techniques and produces accurate erosion rates. We additionally built artificial hillslopes to test the accuracy of curvature measurement methods. We find that at fast erosion rates, curvature is underestimated, raising questions of measurement accuracy elsewhere.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Hemanti Sharma, Todd A. Ehlers, Christoph Glotzbach, Manuel Schmid, and Katja Tielbörger
Earth Surf. Dynam., 9, 1045–1072, https://doi.org/10.5194/esurf-9-1045-2021, https://doi.org/10.5194/esurf-9-1045-2021, 2021
Short summary
Short summary
We study effects of variable climate–vegetation with different uplift rates on erosion–sedimentation using a landscape evolution modeling approach. Results suggest that regardless of uplift rates, transients in precipitation–vegetation lead to transients in erosion rates in the same direction of change. Vegetation-dependent erosion and sedimentation are influenced by Milankovitch timescale changes in climate, but these transients are superimposed upon tectonically driven uplift rates.
Stefan Hergarten
Earth Surf. Dynam., 9, 937–952, https://doi.org/10.5194/esurf-9-937-2021, https://doi.org/10.5194/esurf-9-937-2021, 2021
Short summary
Short summary
This paper presents a new approach to modeling glacial erosion on large scales. The formalism is similar to large-scale models of fluvial erosion, so glacial and fluvial processes can be easily combined. The model is simpler and numerically less demanding than established models based on a more detailed description of the ice flux. The numerical implementation almost achieves the efficiency of purely fluvial models, so that simulations over millions of years can be performed on standard PCs.
Martine Simoes, Timothée Sassolas-Serrayet, Rodolphe Cattin, Romain Le Roux-Mallouf, Matthieu Ferry, and Dowchu Drukpa
Earth Surf. Dynam., 9, 895–921, https://doi.org/10.5194/esurf-9-895-2021, https://doi.org/10.5194/esurf-9-895-2021, 2021
Short summary
Short summary
Elevated low-relief regions and major river knickpoints have for long been noticed and questioned in the emblematic Bhutan Himalaya. We document the morphology of this region using morphometric analyses and field observations, at a variety of spatial scales. Our findings reveal a highly unstable river network, with numerous non-coeval river captures, most probably related to a dynamic response to local tectonic uplift in the mountain hinterland.
Julien Seguinot and Ian Delaney
Earth Surf. Dynam., 9, 923–935, https://doi.org/10.5194/esurf-9-923-2021, https://doi.org/10.5194/esurf-9-923-2021, 2021
Short summary
Short summary
Ancient Alpine glaciers have carved a fascinating landscape of piedmont lakes, glacial valleys, and mountain cirques. Using a previous supercomputer simulation of glacier flow, we show that glacier erosion has constantly evolved and moved to different parts of the Alps. Interestingly, larger glaciers do not always cause more rapid erosion. Instead, glacier erosion is modelled to slow down during glacier advance and peak during phases of retreat, such as the one the Earth is currently undergoing.
Eitan Shelef and Liran Goren
Earth Surf. Dynam., 9, 687–700, https://doi.org/10.5194/esurf-9-687-2021, https://doi.org/10.5194/esurf-9-687-2021, 2021
Short summary
Short summary
Drainage basins are bounded by water divides (divides) that define their shape and extent. Divides commonly coincide with high ridges, but in places that experienced extensive tectonic deformation, divides sometimes cross elongated valleys. Inspired by field observations and using simulations of landscape evolution, we study how side channels that drain to elongated valleys induce pulses of divide migration, affecting the distribution of water and erosion products across mountain ranges.
Vipin Kumar, Imlirenla Jamir, Vikram Gupta, and Rajinder K. Bhasin
Earth Surf. Dynam., 9, 351–377, https://doi.org/10.5194/esurf-9-351-2021, https://doi.org/10.5194/esurf-9-351-2021, 2021
Short summary
Short summary
Despite a history of landslide damming and flash floods in the NW Himalaya, only a few studies have been performed. This study predicts some potential landslide damming sites in the Satluj valley, NW Himalaya, using field observations, laboratory analyses, geomorphic proxies, and numerical simulations. Five landslides, comprising a total landslide volume of 26.3 ± 6.7 M m3, are found to have the potential to block the river in the case of slope failure.
Aaron Micallef, Remus Marchis, Nader Saadatkhah, Potpreecha Pondthai, Mark E. Everett, Anca Avram, Alida Timar-Gabor, Denis Cohen, Rachel Preca Trapani, Bradley A. Weymer, and Phillipe Wernette
Earth Surf. Dynam., 9, 1–18, https://doi.org/10.5194/esurf-9-1-2021, https://doi.org/10.5194/esurf-9-1-2021, 2021
Short summary
Short summary
We study coastal gullies along the Canterbury coast of New Zealand using field observations, sample analyses, drones, satellites, geophysical instruments and modelling. We show that these coastal gullies form when rainfall intensity is higher than 40 mm per day. The coastal gullies are formed by landslides where buried channels or sand lenses are located. This information allows us to predict where coastal gullies may form in the future.
Riccardo Reitano, Claudio Faccenna, Francesca Funiciello, Fabio Corbi, and Sean D. Willett
Earth Surf. Dynam., 8, 973–993, https://doi.org/10.5194/esurf-8-973-2020, https://doi.org/10.5194/esurf-8-973-2020, 2020
Short summary
Short summary
Looking into processes that occur on different timescales that span over thousands or millions of years is difficult to achieve. This is the case when we try to understand the interaction between tectonics and surface processes. Analog modeling is an investigating technique that can overcome this limitation. We study the erosional response of an analog landscape by varying the concentration of components of analog materials that strongly affect the evolution of experimental landscapes.
Stefan Hergarten
Earth Surf. Dynam., 8, 841–854, https://doi.org/10.5194/esurf-8-841-2020, https://doi.org/10.5194/esurf-8-841-2020, 2020
Short summary
Short summary
Many contemporary models of large-scale fluvial erosion focus on the detachment-limited regime where all material entrained by the river is immediately excavated. This limitation facilitates the comparison with real river profiles and strongly reduces the numerical complexity. Here a simple formulation for the opposite case, transport-limited erosion, and a new numerical scheme that achieves almost the same numerical efficiency as detachment-limited models are presented.
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 8, 505–526, https://doi.org/10.5194/esurf-8-505-2020, https://doi.org/10.5194/esurf-8-505-2020, 2020
Short summary
Short summary
We non-dimensionalized a commonly used model of landscape evolution that includes an incision threshold. Whereas the original model included four parameters, we obtained a dimensionless form with a single parameter, which quantifies the relative importance of the incision threshold. Working with this form saves computational time and simplifies theoretical analyses.
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 8, 431–445, https://doi.org/10.5194/esurf-8-431-2020, https://doi.org/10.5194/esurf-8-431-2020, 2020
Short summary
Short summary
Maps of elevation are used to help predict the flow of water so we can better understand landslides, floods, and global climate change. However, modeling the flow of water is difficult when elevation maps include swamps, lakes, and other depressions. This paper explains a new method that overcomes these difficulties, allowing models to run faster and more accurately.
Stefan Hergarten
Earth Surf. Dynam., 8, 367–377, https://doi.org/10.5194/esurf-8-367-2020, https://doi.org/10.5194/esurf-8-367-2020, 2020
Short summary
Short summary
Models of fluvial erosion have a long history in landform evolution modeling. Interactions between rivers and processes acting at hillslopes (e.g., landslides) are receiving growing interest in this context. While present-day computer capacities allow for applying such coupled models, there is still a scaling problem when considering rivers to be linear elements on a topography. Based on a reinterpretation of old empirical results, this study presents a new approach to overcome this problem.
Sara Savi, Stefanie Tofelde, Andrew D. Wickert, Aaron Bufe, Taylor F. Schildgen, and Manfred R. Strecker
Earth Surf. Dynam., 8, 303–322, https://doi.org/10.5194/esurf-8-303-2020, https://doi.org/10.5194/esurf-8-303-2020, 2020
Short summary
Short summary
Fluvial deposits record changes in water and sediment supply. As such, they are often used to reconstruct the tectonic or climatic history of a basin. In this study we used an experimental setting to analyze how fluvial deposits register changes in water or sediment supply at a confluence zone. We provide a new conceptual framework that may help understanding the construction of these deposits under different forcings conditions, information crucial to correctly inferring the history of a basin.
Dirk Scherler and Wolfgang Schwanghart
Earth Surf. Dynam., 8, 245–259, https://doi.org/10.5194/esurf-8-245-2020, https://doi.org/10.5194/esurf-8-245-2020, 2020
Short summary
Short summary
Drainage divides are believed to provide clues about divide migration and the instability of landscapes. Here, we present a novel approach to extract drainage divides from digital elevation models and to order them in a drainage divide network. We present our approach by studying natural and artificial landscapes generated with a landscape evolution model and disturbed to induce divide migration.
Dirk Scherler and Wolfgang Schwanghart
Earth Surf. Dynam., 8, 261–274, https://doi.org/10.5194/esurf-8-261-2020, https://doi.org/10.5194/esurf-8-261-2020, 2020
Short summary
Short summary
Drainage divides are believed to provide clues about divide migration and the instability of landscapes. Here, we present a novel approach to extract drainage divides from digital elevation models and to order them in a drainage divide network. We present our approach by studying natural and artificial landscapes generated with a landscape evolution model and disturbed to induce divide migration.
Vincent Godard, Jean-Claude Hippolyte, Edward Cushing, Nicolas Espurt, Jules Fleury, Olivier Bellier, Vincent Ollivier, and the ASTER Team
Earth Surf. Dynam., 8, 221–243, https://doi.org/10.5194/esurf-8-221-2020, https://doi.org/10.5194/esurf-8-221-2020, 2020
Short summary
Short summary
Slow-slipping faults are often difficult to identify in landscapes. Here we analyzed high-resolution topographic data from the Valensole area at the front of the southwestern French Alps. We measured various properties of hillslopes such as their relief and the shape of hilltops. We observed systematic spatial variations of hillslope morphology indicative of relative changes in erosion rates. These variations are potentially related to slow tectonic deformation across the studied area.
Helen W. Beeson and Scott W. McCoy
Earth Surf. Dynam., 8, 123–159, https://doi.org/10.5194/esurf-8-123-2020, https://doi.org/10.5194/esurf-8-123-2020, 2020
Short summary
Short summary
We used a computer model to show that, when a landscape is tilted, rivers respond in a distinct way such that river profiles take on unique forms that record tilt timing and magnitude. Using this suite of river forms, we estimated tilt timing and magnitude in the Sierra Nevada, USA, and results were consistent with independent measures. Our work broadens the scope of tectonic histories that can be extracted from landscape form to include tilting, which has been documented in diverse locations.
Georg Trost, Jörg Robl, Stefan Hergarten, and Franz Neubauer
Earth Surf. Dynam., 8, 69–85, https://doi.org/10.5194/esurf-8-69-2020, https://doi.org/10.5194/esurf-8-69-2020, 2020
Short summary
Short summary
The evolution of the drainage system in the Eastern Alps is inherently linked to different tectonic stages. This leads to a situation in which major orogen-parallel alpine rivers, such as the Salzach and the Enns, are characterized by elongated east–west-oriented catchments. We investigate the stability of present-day drainage divides and the stability of reconstructed paleo-drainage systems. Our results indicate a progressive stability of the network towards the present-day situation.
Philippe Steer, Thomas Croissant, Edwin Baynes, and Dimitri Lague
Earth Surf. Dynam., 7, 681–706, https://doi.org/10.5194/esurf-7-681-2019, https://doi.org/10.5194/esurf-7-681-2019, 2019
Short summary
Short summary
We use a statistical earthquake generator to investigate the influence of fault activity on river profile development and on the formation of co-seismic knickpoints. We find that the magnitude distribution of knickpoints resulting from a purely seismic fault is homogeneous. Shallow aseismic slip favours knickpoints generated by large-magnitude earthquakes nucleating at depth. Accounting for fault burial by alluvial cover can modulate the topographic expression of earthquakes and fault activity.
Guillaume Cordonnier, Benoît Bovy, and Jean Braun
Earth Surf. Dynam., 7, 549–562, https://doi.org/10.5194/esurf-7-549-2019, https://doi.org/10.5194/esurf-7-549-2019, 2019
Short summary
Short summary
We propose a new algorithm to solve the problem of flow routing across local depressions in the topography, one of the main computational bottlenecks in landscape evolution models. Our solution is more efficient than the state-of-the-art algorithms, with an optimal linear asymptotic complexity. The algorithm has been designed specifically to be used within landscape evolution models, and also suits more generally the efficient treatment of large digital elevation models.
Cited articles
Allen, P. A., Armitage, J. J., Carter, A., Duller, R. A., Michael, N. A.,
Sinclair, H. D., Whitchurch, A. L., and Whittaker, A. C.: The Qs
problem: Sediment volumetric balance of proximal foreland basin systems,
Sedimentology, 60, 102–130, https://doi.org/10.1111/sed.12015, 2013. a, b, c, d
Armitage, J. J., Dunkley Jones, T., Duller, R. A., Whittaker, A. C., and
Allen, P. A.: Temporal buffering of climate-driven sediment flux cycles by
transient catchment response, Earth Planet. Sci. Lett., 369–370,
200–210, https://doi.org/10.1016/j.epsl.2013.03.020, 2013. a, b, c, d, e, f, g, h, i, j, k
Armitage, J. J., Allen, P. A., Burgess, P. M., Hampson, G. J., Whittaker,
A. C., Duller, R. A., and Michael, N. A.: Physical stratigraphic model for
the Eocene Escanilla sediment routing system: Implications for the
uniqueness of sequence stratigraphic architectures, J. Sediment.
Res., 85, 1510–1524, https://doi.org/10.2110/jsr.2015.97, 2015. a, b
Banavar, J. R., Colaiori, F., Flammini, A., Giacometi, A., MAritan, A., and
Rinaldo, A.: Sculpting of a fractal river basin, Phys. Rev. Lett., 23,
4522–4525, 1997. a
Bonnet, S. and Crave, A.: Landscape response to climate change: Insights
from
experimental modeling and implications for tectonic versus climatic uplift of
topograph, Geology, 31, 123–126, 2003. a
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and
parallel
method to solve the stream power equation governing fluvial incision and
landscape evolution, Geomorphology, 180/181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013. a, b
Braun, J., Voisin, C., Gourlan, A. T., and Chauvel, C.: Erosional response of
an actively uplifting mountain belt to cyclic rainfall variations, Earth
Surf. Dynam., 3, 1–14, https://doi.org/10.5194/esurf-3-1-2015, 2015. a
Campforts, B. and Covers, G.: Keeping the edge: A numerical method that
avoids
knickpoint smearing when solving the stream power law, J. Geophys.
Res., 120, 1189–1205, https://doi.org/10.1002/2014JF003376, 2015. a, b
Castelltort, S. and Van Den Dreissche, J.: How plausible are high-frequency
sediment supply-driven cycles in the stratigraphic record?, Sediment.
Geol., 157, 3–13, https://doi.org/10.1016/S0037-0738(03)00066-6, 2003. a
Cowie, P. A., Whittaker, A. C., Attal, M., Roberts, G., Tucker, G. E., and
Ganas, A.: New constraints on sediment-flux–dependent river incision:
Implications for extracting tectonic signals from river profiles, Geology,
36, 535–538, https://doi.org/10.1130/G24681A.1, 2008. a
Croissant, T. and Braun, J.: Constraining the stream power law: a novel
approach combining a landscape evolution model and an inversion method, Earth
Surf. Dynam., 2, 155–166, https://doi.org/10.5194/esurf-2-155-2014, 2014. a
Crosby, B. T., Whipple, K. X., Gasparini, N. M., and Wobus, C. W.: Formation
of
fluvial hanging valleys: Theory and simulation, J. Geophys.
Res., 112, F03510, https://doi.org/10.1029/2006JF000566, 2007. a
Cuevas, J. L.: Estratigrafia del “Garumniense” de la Conca de Tremp,
Prepirineo de Lerida, Acata Geological Hispanica, 27, 95–108, 1992. a
D'Arcy, M., Whittaker, A. C., and Roda-Boluda, D. C.: Measuring alluvial
fan sensitivity to past climate changes using a self-similarity approach to
grain-size fining, Death Valley, California, Sedimentology, 64,
388–424, https://doi.org/10.1111/sed.12308, 2016. a
D'Arcy, M., Whittaker, A. C., and Roda-Boluda, D. C.: Measuring alluvial
fan sensitivity to past climate changes using a self-similarity approach to
grain-size fining, Death Valley, California, Sedimentology, 64,
388–424, https://doi.org/10.1111/sed.12308, 2017. a, b, c
Demoulin, A., Mather, A., and Whittaker, A.: Fluvial archives, a valuable
record of vertical crustal deformation, Quaternary Sci. Rev., 166,
10–37, https://doi.org/10.1016/j.quascirev.2016.11.011, 2017. a, b, c
Densmore, A. L., Allen, P. A., and Simpson, G.: Development and response of a
coupled catchment fan system under changing tectonic and climatic forcing,
J. Geophys. Res., 112, F01002, https://doi.org/10.1029/2006JF000474, 2007. a
Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Srock, J. D., Heimsath, A. M.,
and Roering, J. J.: Geomorphic transport laws for predicting landscape form
and dynamics, in: Prediction in Geomorphology, edited by: Wilcock, P. R. and
Iverson, R. M., Geoph. Monog. Series, 135, 1–30, https://doi.org/10.1029/135GM09, 2003. a
Dietrich, W. M.: Settling velocity of natural particles, Water Resour.
Res., 18, 1615–1626, 1982. a
Dodds, P. S. and Rothman, D. H.: Geometry of river networks. I. Scaling,
fluctuations and deviations, Phys. Rev. E, 63, 016115, https://doi.org/10.1103/PhysRevE.63.016115, 2000. a, b, c
Dunkley Jones, T., Ridgwell, A., Lunt, D. J., Maslin, M. A., Schmidt,
D. N.,
and Valdes, P. J.: A Palaeogene perspective on climate sensitivity and
methane hydrate instability, P. T. Roy. Soc. Pt.
A, 368, 2395–2415, https://doi.org/10.1098/rsta.2010.0053, 2010. a
Forman, B. Z. and Straub, K. M.: Autogenic geomorphic processes determine the
resolution and fidelity of terrestrial paleoclimate records, Sci.
Adv., 3, e1700683, https://doi.org/10.1126/sciadv.1700683, 2017. a, b
Ganti, V., Lamb, M. P., and McElroy, B.: Quantitative bounds on
morphodynamics and implications for reading the sedimentary record, Nat.
Comun., 5, 3298, https://doi.org/10.1038/ncomms4298, 2014. a, b
Grimaud, J. L., Chardon, D., and Beauvais, A.: Very long-term incision of big
rivers, Earth Planet. Sci. Lett., 405, 74–84, https://doi.org/10.1016/j.epsl.2014.08.021, 2014. a
Grimaud, J. L., Paola, C., and Voller, V.: Experimental migration of
knickpoints: influence of style of base-level fall and bed lithology, Earth
Surf. Dynam., 4, 11–23, https://doi.org/10.5194/esurf-4-11-2016, 2016. a
Guerit, L., Métivier, F., Devauchelle, O., Lajeunesse, E., and Barrier,
L.:
Laboratory alluvial fans in one dimension, Phys. Rev. E, 90, 022203, https://doi.org/10.1103/PhysRevE.90.022203, 2014. a
Hack, J. T.: Studies of longitudingal profiles in Virginia and Maryland,
US Geological Survey Proffesional Papaer, 294-B, 1957. a
Hancock, G. R., Coulthard, T. J., and Lowry, J. B. C.: Predicting uncertainty
in sediment transport and landscape evolution - the influence of initial
surface conditions, Comput. Geosci., 90, 117–130, https://doi.org/10.1016/j.cageo.2015.08.014, 2016. a
Izumi, N. and Parker, G.: Inception of channelization and drainage basin
formation: upstream-driven theory, J. Fluid Mech., 283, 341–363,
1995. a
Kirkby, M. J.: Hillslope process-response models based on the continuity
equation, Special Publication Institute of British Geographers, 3, 15–30,
1971. a
Lacey, G.: Stable channels in alluvium, in: Minutes of the Proceedings,
edited
by: Grierson, W. W., Institution of Civil Engineers
Publishing, vol. 229, 259–292, 1930. a
Lague, D.: The stream power river incision model: evidence, theory and
beyond,
Earth Surf. Proc. Land., 39, 38–61, https://doi.org/10.1002/esp.3462,
2014. a, b, c, d
Leopold, L. B. and Maddock, T.: The hydraulic geometry of stream channels and
some physiographic implications, Tech. Rep. 252, US Geological Survey
Proffesional Papers, 57 pp., 1953. a
Liu, Y., Métivier, F., Gaillerdet, J., Ye, B., Meunier, P., Narteau, C.,
Lajeunesse, E., Han, T., and Malverti, L.: Erosion rates deduced from
seasonal mass balance along the upper Urumqi River in Tianshan, Solid
Earth, 2, 283–301, https://doi.org/10.5194/se-2-283-2011, 2011. a
Manners, H. R., Grimes, S. T., Sutton, P. A., Domingo, L., Leng, M. J.,
Twitchett, R. J., Hart, M. B., Dunkley Jones, T., Pancost, R. D., Duller,
R., and Lopez-Martinez, N.: Magnitude and profile of organic carbon isotope
records from the Paleocene – Eocene Thermal Maximum: Evidence from
northern Spain, Earth Planet. Sci. Lett., 376, 220–230, https://doi.org/10.1016/j.epsl.2013.06.016, 2013. a, b
Maritan, A., Rinaldo, A., Rigon, R., Giacometti, A., and Rordriguez-Iturbe,
I.: Scaling laws for river networks, Phys. Rev. E, 53, 1510–1515, 1996. a
Meunier, P., Métivier, F., Lajeunesse, E., Mériaux, A. S., and Faure,
J.: Flow pattern and sediment transport in a braided river: The ”torrent de
St Pierre” (French Alps), J. Hydrol., 330, 496–505, https://doi.org/10.1016/j.jhydrol.2006.04.009, 2006. a
Michael, N. A., Whittaker, A. C., Carter, A., and Allen, P. A.: Volumetric
budget and grain-size fractionation of a geological sediment routing system:
Eocene Escanilla Formation, south-central Pyrenees, Geol.
Soc. Am. Bull., 126, 585–599, https://doi.org/10.1130/B30954.1, 2014. a
Mouchené, M., van der Beek, P., Carretier, S., and Mouthereau, F.:
Autogenic versus allogenic controls on the evolution of a coupled fluvial
megafan-mountainous catchment system: numerical modelling and comparison with
the Lannemezan megafan system (northern Pyrenees, France), Earth
Surf. Dynam., 5, 125–143, https://doi.org/10.5194/esurf-5-125-2017, 2017. a
Pastor-Satorras, R. and Rothman, D. H.: Stochastic Equation for the Erosion
of Inclined Topography, Phys. Rev. Lett., 80, 4349–4352, https://doi.org/10.1103/PhysRevLett.80.4349, 1998. a
Perron, J. T. and Royden, L.: An integral approach to bedrock river profile
analysis, Earth Surf. Proc. Land., 38, 570–576, https://doi.org/10.1002/esp.3302, 2012. a, b
Pritchard, D., Roberts, G. G., White, N. J., and Richardson, C. N.: Uplift
histories from river profiles, Geophys. Res. Lett., 36, L24301, https://doi.org/10.1029/2009GL040928, 2009. a, b
Rohais, S., Bonnet, S., and Eschard, R.: Sedimentary record of tectonic and
climatic erosional perturbations in an experimental coupled catchment-fan
system, Basin Res., 23, 1–15, https://doi.org/10.1111/j.1365-2117.2011.00520.x,
2011. a
Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C.: On the
duration of the Paleocene-Eocene thermal maximum (PETM), Geochem.
Geophy. Geosy., 8, Q12002, https://doi.org/10.1029/2007GC001784, 2007. a
Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., and Walsh,
J. P.:
Environmental signal propagation in sedimentary systems across timescales,
Earth-Sci. Rev., 153, 7–29, https://doi.org/10.1016/j.earscirev.2015.07.012,
2016. a, b, c
Roy, S. G., Koons, P. O., Upton, P., and Tucker, G. E.: The influence of
crustal strength fields on the patterns and rates of fluvial incision,
J. Geophys. Res., 120, 275–299, https://doi.org/10.1002/2014JF003281,
2015. a, b
Rudge, J. F., Roberts, G. G., White, N. J., and Richardson, C. N.: Uplift
histories of Africa and Australia from linear inverse modeling of
drainage inventories, J. Geophys. Res., 120, 894–914, https://doi.org/10.1002/2014JF003297, 2015. a, b, c, d
Schmitz, B. and Pujalte, V.: Abrupt increase in seasonal extreme
precipitation
at the Paleocene-Eocene boundary, Geology, 35, 215–218, https://doi.org/10.1130/G23261A.1, 2007. a, b, c
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox
2 – MATLAB-based software for topographic analysis and modeling in Earth
surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014. a
Simpson, G. and Castelltort, S.: Model shows that rivers transmit
high-frequency climate cycles to the sedimentary record, Geology, 40,
1131–1134, https://doi.org/10.1130/G33451.1, 2012. a, b
Simpson, G. and Schlunegger, F.: Topographic evolution and morphology of
surfaces evolving in response to coupled fluvial and hillslope sediment
transport, J. Geophys. Res., 108, 2300, https://doi.org/10.1029/2002JB002162,
2003. a, b
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H.,
Sinninghe
Damsté, J. S., Dickens, G. R., Huber, M., Reichart, G. J., Stein, R.,
Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K., and
the Expedition 302 scientists: Subtropical Arctic Ocean temperatures during
the Palaeocene/Eocene thermal maximum, Nature, 411, 610–613, https://doi.org/10.1038/nature04668, 2006. a
Smith, T. R.: A theory for the emergence of channelized drainage, J.
Geophys. Res., 115, F02023, https://doi.org/10.1029/2008JF001114, 2010. a
Smith, T. R., Merchant, G. E., and Birnir, B.: Transient attractors: towards
a
theory of the graded stream for alluvial and bedrock channels, Comput.
Geosci., 26, 541–580, https://doi.org/10.1016/S0098-3004(99)00128-4, 2000. a, b
Snyder, N. P., Whipple, K. X., Tucker, E., and Merrits, D. J.: Landscape
response to tectonic forcing: Digital elevation model analysis of stream
profiles in the Mendocino triple junction region, northern California,
Geol. Soc. Am. Bull., 112, 1250–1263, https://doi.org/10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2, 2000. a, b, c, d
Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I.: Comment on “On the
fractal dimension of stream network” by Paolo La Barbera and Renzo Rosso,
Water Resour. Res., 26, 2243–2244, https://doi.org/10.1029/WR026i009p02243, 1990. a
Temme, A. J. A. M., Armitage, J. J., Attal, M., van Gorp, W., Coulthard,
T. J., and Schoorl, J. M.: Choosing and using landscape evolution models to
inform field stratigraphy and landscape reconstruction studies, Earth Surf.
Proc. Land., 42, 2167–2183, https://doi.org/10.1002/esp.4162, 2017. a, b, c
Tinkler, K. J. and Whol, E. E.: Rivers over Rock: fluvial processes in
bedrock
channels, American Geophysical Union,
Washington, USA, Geophys. Monog. Series, 107, https://doi.org/10.1029/GM107, 1998. a
Tucker, G. E. and Whipple, K. X.: Topographic outcomes predicted by stream
erosion models: Sensitivity analysis and intermodel comparison, J.
Geophys. Res., 107, 2179, https://doi.org/10.1029/2001JB000162, 2002.
a, b, c, d
Valla, P. G., van der Beek, P. A., and Lague, D.: Fluvial incision into
bedrock: Insights from morphometric analysis and numerical modeling of gorges
incising glacial hanging valleys (Western Alps, France), J.
Geophys. Res., 116, F02010, https://doi.org/10.1029/2008JF001079, 2010. a, b
van der Beek, P. and Bishop, P.: Ceonzoic river profile development in the
Upper Lachlan catchment (SE Australia) as a test of quantative
fluvial incision models, J. Geophys. Res., 108, 2309, https://doi.org/10.1029/2002JB002125, 2003. a
Whipple, K. X.: Bedrock rivers and the geomorphology of active orogens, Ann.
Rev. Earth Planet. Sci., 32, 151–185, https://doi.org/10.1146/annurev.earth.32.101802.120356, 2004. a
Whipple, K. X. and Meade, B. J.: Orogen response to changes in climatic and
tectonic forcing, Earth Planet. Sci. Lett., 243, 218–228, https://doi.org/10.1016/j.epsl.2005.12.022, 2006. a, b
Whittaker, A. C. and Boulton, S. J.: Tectonic and climatic controls on
knickpoint retreat rates and landscape response times, J. Geophys.
Res., 117, F02024, https://doi.org/10.1029/2011JF002157, 2012. a, b, c
Whittaker, A. C., Cowie, P. A., Attal, M., Tucker, G. E., and Roberts, G. P.:
Bedrock channel adjustment to tectonic forcing: Implications for predicting
river incision rates, Geology, 35, 103–106, https://doi.org/10.1130/G23106A.1, 2007. a, b
Whittaker, A. C., Attal, M., Cowie, P. A., Tucker, G. E., and Roberts, G.:
Decoding temporal and spatial patterns of fault uplift using transient river
long-profiles, Geomorphology, 100, 506–526, https://doi.org/10.1016/j.geomorph.2008.01.018, 2008. a
Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L., and Chen, C.:
Dynamic
Reorganization of River Basins, Science, 343, 6175, https://doi.org/10.1126/science.1248765,
2014. a
Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I.: A physical
explanation
of an observed link area-slope relationship, Water Resour. Res., 27,
1697–1702, 1991. a
Short summary
We explore how two landscape evolution models respond to a change in climate. The two models are developed from a divergent assumption on the efficiency of sediment transport. Despite the different resulting mathematics, both numerical models display a similar functional response to a change in precipitation. However, if we model sediment transport rather than assume it is instantaneously removed, the model responds more rapidly, with a response time similar to that observed in nature.
We explore how two landscape evolution models respond to a change in climate. The two models are...