Articles | Volume 9, issue 5
https://doi.org/10.5194/esurf-9-1279-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1279-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hilltop curvature as a proxy for erosion rate: wavelets enable rapid computation and reveal systematic underestimation
Department of Geosciences, University of Arizona, Tucson, Arizona
85721, USA
Department of Earth Sciences, University of Oregon, Eugene, Oregon
97403, USA
Joshua J. Roering
Department of Earth Sciences, University of Oregon, Eugene, Oregon
97403, USA
Related authors
Greg Balco, Alan J. Hidy, William T. Struble, and Joshua J. Roering
Geochronology, 6, 71–76, https://doi.org/10.5194/gchron-6-71-2024, https://doi.org/10.5194/gchron-6-71-2024, 2024
Short summary
Short summary
We describe a new method of reconstructing the long-term, pre-observational frequency and/or intensity of wildfires in forested landscapes using trace concentrations of the noble gases helium and neon that are formed in soil mineral grains by cosmic-ray bombardment of the Earth's surface.
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam., 11, 1117–1143, https://doi.org/10.5194/esurf-11-1117-2023, https://doi.org/10.5194/esurf-11-1117-2023, 2023
Short summary
Short summary
Debris flows are mixtures of mud and rocks that can travel at high speeds across steep landscapes. Here, we propose a new model to describe how landscapes are shaped by debris flow erosion over long timescales. Model results demonstrate that the shapes of channel profiles are sensitive to uplift rate, meaning that it may be possible to use topographic data from steep channel networks to infer how erosion rates vary across a landscape.
Nathaniel Klema, Leif Karlstrom, and Joshua Roering
EGUsphere, https://doi.org/10.5194/egusphere-2025-4431, https://doi.org/10.5194/egusphere-2025-4431, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Geomorphology is built on process models that take topographic geometry as inputs. However, many studies calculate these metrics on 2-d projections of topography rather than on true surfaces in 3-d space. In this work we apply classical surface theory to fluvial topography of the Oregon Coast Range, USA. This formal approach improves the accuracy of geometry calculations, extracts more information than standard methods, and sheds light on the organizational structure of landscapes.
Joshua J. Roering, Margaret Darrow, Annette Patton, and Aaron Jacobs
EGUsphere, https://doi.org/10.5194/egusphere-2025-4123, https://doi.org/10.5194/egusphere-2025-4123, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
A deadly landslide struck Wrangell Island, Alaska, in November 2023, traveling over a kilometer and claiming six lives. Our study shows it was likely triggered by moderate rainfall combined with rapid snowmelt and drainage from a ridgetop wetland, which saturated deep soil deposits. The landslide grew unusually large as it entrained abundant soil downslope. Findings highlight the role of storm patterns, geology, and hydrology in driving future landslide hazards in SE Alaska.
Ian D. Wachino, Joshua J. Roering, Reuben Cash, and Annette I. Patton
EGUsphere, https://doi.org/10.5194/egusphere-2025-1168, https://doi.org/10.5194/egusphere-2025-1168, 2025
Short summary
Short summary
Rockfalls are a common hazard in steep mountain valleys, especially near Skagway, Alaska, where recent events have threatened public safety and infrastructure. This study identifies zones prone to rockfall by analyzing rock formations, past rockfall deposits, and computer models predicting how rocks travel downslope. Our findings highlight high-risk areas and provide insights to improve hazard mitigation, helping protect communities and tourism in the region.
Greg Balco, Alan J. Hidy, William T. Struble, and Joshua J. Roering
Geochronology, 6, 71–76, https://doi.org/10.5194/gchron-6-71-2024, https://doi.org/10.5194/gchron-6-71-2024, 2024
Short summary
Short summary
We describe a new method of reconstructing the long-term, pre-observational frequency and/or intensity of wildfires in forested landscapes using trace concentrations of the noble gases helium and neon that are formed in soil mineral grains by cosmic-ray bombardment of the Earth's surface.
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam., 11, 1117–1143, https://doi.org/10.5194/esurf-11-1117-2023, https://doi.org/10.5194/esurf-11-1117-2023, 2023
Short summary
Short summary
Debris flows are mixtures of mud and rocks that can travel at high speeds across steep landscapes. Here, we propose a new model to describe how landscapes are shaped by debris flow erosion over long timescales. Model results demonstrate that the shapes of channel profiles are sensitive to uplift rate, meaning that it may be possible to use topographic data from steep channel networks to infer how erosion rates vary across a landscape.
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023, https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
David Jon Furbish, Joshua J. Roering, Tyler H. Doane, Danica L. Roth, Sarah G. W. Williams, and Angel M. Abbott
Earth Surf. Dynam., 9, 539–576, https://doi.org/10.5194/esurf-9-539-2021, https://doi.org/10.5194/esurf-9-539-2021, 2021
Short summary
Short summary
Sediment particles skitter down steep hillslopes on Earth and Mars. Particles gain speed in going downhill but are slowed down and sometimes stop due to collisions with the rough surface. The likelihood of stopping depends on the energetics of speeding up (heating) versus slowing down (cooling). Statistical physics predicts that particle travel distances are described by a generalized Pareto distribution whose form varies with the Kirkby number – the ratio of heating to cooling.
David Jon Furbish, Sarah G. W. Williams, Danica L. Roth, Tyler H. Doane, and Joshua J. Roering
Earth Surf. Dynam., 9, 577–613, https://doi.org/10.5194/esurf-9-577-2021, https://doi.org/10.5194/esurf-9-577-2021, 2021
Short summary
Short summary
The generalized Pareto distribution of particle travel distances on steep hillslopes, as described in a companion paper (Furbish et al., 2021a), is entirely consistent with measurements of travel distances obtained from laboratory and field-based experiments, supplemented with high-speed imaging and audio recordings that highlight the effects of bumpety-bump particle motions. Particle size and shape, in concert with surface roughness, strongly influence particle energetics and deposition.
Cited articles
Almond, P., Roering, J., and Hales, T. C.: Using soil residence time to delineate spatial and temporal patterns of transient landscape response, J. Geophys. Res., 112, F03S17, https://doi.org/10.1029/2006JF000568, 2007.
Andrews, D. J. and Bucknam, R. C.: Fitting degradation of shoreline scarps by
a nonlinear diffusion model, J. Geophys. Res., 92, 12857–12867,
https://doi.org/10.1029/JB092iB12p12857, 1987.
Audet, P.: Toward mapping the effective elastic thickness of planetary
lithospheres from a spherical wavelet analysis of gravity and topography,
Phys. Earth Planet. In., 226, 48–82, https://doi.org/10.1016/j.pepi.2013.09.011, 2014.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Balco, G., Finnegan, N., Gendaszek, A., Stone, J. O., and Thompson, N.:
Erosional response to northward-propagating crustal thickening in the
coastal ranges of the US Pacific Northwest. Am. J. Sci., 313, 790–806, 2013.
Baldwin, E. M.: Geologic map of the lower Siuslaw River area, Oregon, Oil and Gas Investigations 186, scale , United States Geological Survey, Washington, D. C., https://doi.org/10.3133/om186, 1956.
Barnhart, K. R., Tucker, G. E., Doty, S. G., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting Topography for Landscape Evolution Model Process Representation: 1. Conceptualization and Sensitivity Analysis, J. Geophys. Res.-Earth, 125, e2018JF004961, https://doi.org/10.1029/2018JF004961, 2020.
Benda, L. and Dunne, T.: Stochastic forcing of sediment supply to channel
networks from landsliding and debris flow, Water Resour. Res., 33, 2849–2863, https://doi.org/10.1029/97WR02388, 1997.
BenDror, E. and Goren, L.: Controls Over Sediment Flux Along Soil-Mantled
Hillslopes: Insights from Granular Dynamics Simulations, J. Geophys. Res.-Earth, 123, 924–944, https://doi.org/10.1002/2017JF004351, 2018.
Bierman, P., Clapp, E., Nichols, K., Gillespie, A., and Caffee, M. W.: Using
cosmogenic nuclide measurements in sediments to understand background rates
of erosion and sediment transport, in: Landscape Erosion and Evolution
Modeling, Springer, Boston, MA, 89–115, 2001.
Black, B. A., Perron, J. T., Hemingway, D., Bailey, E., Nimmo, F., and Zebker, H.: Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan, Science, 356, 727–731, https://doi.org/10.1126/science.aag0171, 2017.
Booth, A. M., Roering, J. J., and Perron, J. T.: Automated landslide mapping
using spectral analysis and high-resolution topographic data: Puget Sound
lowlands, Washington, and Portland Hills, Oregon, Geomorphology, 109,
132–147, https://doi.org/10.1016/j.geomorph.2009.02.027, 2009 (available at: http://web.pdx.edu/~boothad/tools.html, last access: 14 September 2021).
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C.: Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas, Nature, 379, 505–510, https://doi.org/10.1038/379505a0, 1996.
Clubb, F. J., Mudd, S. M., Milodowski, D. T., Hurst, M. D., and Slater, L. J.: Objective extraction of channel heads from high-resolution topographic data, Water Resour. Res., 50, 4283–4304, https://doi.org/10.1002/2013WR015167, 2014.
Clubb, F. J., Mudd, S. M., Hurst, M. D., and Grieve, S. W. D.: Differences in
channel and hillslope geometry record a migrating uplift wave at the
Mendocino triple junction, California, USA, Geology, 48, 184–188,
https://doi.org/10.1130/G46939.1, 2020.
Deshpande, N., Furbish, D., Arratia, P., and Jerolmack, D.: The perpetual
fragility of creeping hillslopes, Nat. Commun., 12, 3909,
https://doi.org/10.31223/OSF.IO/QC9JH, 2021.
DiBiase, R. A., Heimsath, A. M., and Whipple, K. X.: Hillslope response to
tectonic forcing in threshold landscapes, Earth Surf. Proc. Land., 37, 855–865, https://doi.org/10.1002/esp.3205, 2012.
Dietrich, W. E. and Dunne, T.: Sediment budget for a small catchment in
mountainous terrain, Z. Geomorphol. N.F., 29, 191–206, 1978.
Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M., and Roering, J. J.: Geomorphic transport laws for predicting landscape form and dynamics, in: Geophysical Monograph Series, edited by: Wilcock, P. R. and Iverson, R. M., American Geophysical Union, Washington, D.C., 103–132, 2003.
Doane, T. H., Roth, D. L., Roering, J. J., and Furbish, D. J.: Compression and Decay of Hillslope Topographic Variance in Fourier Wavenumber Domain, J. Geophys. Res.-Earth, 124, 60–79, https://doi.org/10.1029/2018JF004724, 2019.
Ferdowsi, B., Ortiz, C. P., and Jerolmack, D. J.: Glassy dynamics of landscape evolution, P. Natl. Acad. Sci. USA, 115, 4827–4832,
https://doi.org/10.1073/pnas.1715250115, 2018.
Forte, A. M. and Whipple, K. X.: Criteria and tools for determining drainage
divide stability, Earth Planet. Sc. Lett., 493, 102–117,
https://doi.org/10.1016/j.epsl.2018.04.026, 2018.
Foufoula-Georgiou, E. and Kumar, P.: Wavelet Analysis in Geophysics, in:
Wavelet Analysis and Its Applications, Academic Press, New York, 1–43, https://doi.org/10.1016/B978-0-08-052087-2.50007-4, 1994.
Fox, M.: A linear inverse method to reconstruct paleo-topography,
Geomorphology, 337, 151–164, https://doi.org/10.1016/j.geomorph.2019.03.034, 2019.
Franczyk, J. J., Burns, W. J., and Calhoun, N. C.: Statewide Landslide
Information Database for Oregon Release-4.0, SLIDO 4.0, Digital Data Series.
Oregon Department of Geology and Mineral Industries, Portland, OR, 2019.
Gabet, E. J.: Gopher bioturbation: Field evidence for non-linear hillslope
diffusion, Earth Surf. Proc. Land., 25, 1419–1428, https://doi.org/10.1002/1096-9837(200012)25:13<1419::AID-ESP148>3.0.CO;2-1, 2000.
Gabet, E. J., Mudd, S. M., Wood, R. W., Grieve, S. W. D., Binnie, S. A., and
Dunai, T. J.: Hilltop Curvature Increases with the Square Root of Erosion
Rate, J. Geophys. Res.-Earth, 126, e2020JF005858, https://doi.org/10.1029/2020JF005858, 2021.
Ganti, V., Passalacqua, P., and Foufoula-Georgiou, E.: A sub-grid scale
closure for nonlinear hillslope sediment transport models, J. Geophys. Res.,
117, F02012, https://doi.org/10.1029/2011JF002181, 2012.
García-Serrana, M., Gulliver, J. S., and Nieber, J. L.: Description of
soil micro-topography and fractional wetted area under runoff using fractal
dimensions: Soil micro-topography, fractional wetted area, and fractal
dimensions, Earth Surf. Proc. Land., 43, 2685–2697, https://doi.org/10.1002/esp.4424, 2018.
Gilbert, G. K.: Report on the Geology of the Henry Mountains, US Government
Printing Office, Washington, D.C., 1–152, 1877.
Gilbert, G. K.: The Convexity of Hilltops, J. Geol., 17, 344–350, https://doi.org/10.1086/621620, 1909.
Godard, V., Hippolyte, J.-C., Cushing, E., Espurt, N., Fleury, J., Bellier, O., Ollivier, V., and the ASTER Team: Hillslope denudation and morphologic response to a rock uplift gradient, Earth Surf. Dynam., 8, 221–243, https://doi.org/10.5194/esurf-8-221-2020, 2020.
Grieve, S. W. D., Mudd, S. M., Hurst, M. D., and Milodowski, D. T.: A nondimensional framework for exploring the relief structure of landscapes, Earth Surf. Dynam., 4, 309–325, https://doi.org/10.5194/esurf-4-309-2016, 2016a.
Grieve, S. W. D., Mudd, S. M., Milodowski, D. T., Clubb, F. J., and Furbish, D. J.: How does grid-resolution modulate the topographic expression of geomorphic processes?, Earth Surf. Dynam., 4, 627–653, https://doi.org/10.5194/esurf-4-627-2016, 2016b.
Heimsath, A. M., Dietrich, W. E., Kunihiko, N., and Finkel, R. C.: The soil
production function and landscape equilibrium, Nature, 388, 358–361, 1997.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C.: Stochastic processes of soil production and transport: erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range, Earth Surf. Proc. Land., 26, 531–552, https://doi.org/10.1002/esp.209, 2001
Heller, P. L. and Dickinson, W. R.: Submarine Ramp Facies Model for
Delta-Fed, Sand-Rich Turbidite Systems. AAPG Bulletin, 69, 960–976,
https://doi.org/10.1306/AD462B37-16F7-11D7-8645000102C1865D, 1985
Howard, A. D.: A detachment-limited model of drainage basin evolution, Water
Resour. Res., 30, 2261–2285, 1994.
Hurst, M. D., Mudd, S. M., Walcott, R., Attal, M., and Yoo, K.: Using hilltop
curvature to derive the spatial distribution of erosion rates, J. Geophys. Res., 117, F02017, https://doi.org/10.1029/2011JF002057, 2012.
Hurst, M. D., Mudd, S. M., Attal, M., and Hilley, G.: Hillslopes Record the
Growth and Decay of Landscapes, Science, 341, 868–871,
https://doi.org/10.1126/science.1241791, 2013.
Hurst, M. D., Grieve, S. W. D., Clubb, F. J., and Mudd, S. M.: Detection of
channel-hillslope coupling along a tectonic gradient, Earth Planet. Sc. Lett., 522, 30–39, https://doi.org/10.1016/j.epsl.2019.06.018, 2019.
Jordan, G. and Schott, B.: Application of wavelet analysis to the study of
spatial pattern of morphotectonic lineaments in digital terrain models. A
case study, Remote Sens. Environ., 94, 31–38, https://doi.org/10.1016/j.rse.2004.08.013, 2005.
Kelsey, H. M., Ticknor, R. L., Bockheim, J. G., and Mitchell, E.: Quaternary
upper plate deformation in coastal Oregon, Geol. Soc. Am. Bull., 108, 843–860, 1996.
Kirby, E. and Whipple, K.: Quantifying differential rock-uplift rates via
stream profile analysis, Geology, 29, 415–418, 2001.
Kirby, E. and Whipple, K. X.: Expression of active tectonics in erosional
landscapes, J. Struct. Geol., 44, 54–75, https://doi.org/10.1016/j.jsg.2012.07.009, 2012.
Konowalczyk, M.: randnd, GitHub [code], available at: https://github.com/MarcinKonowalczyk/randnd/, last access: 14 September 2021.
LaHusen, S. R., Duvall, A. R., Booth, A. M., Grant, A., Mishkin, B. A.,
Montgomery, D. R., Struble, W., Roering, J. J., and Wartman, J.: Rainfall
triggers more deep-seated landslides than Cascadia earthquakes in the Oregon
Coast Range, USA, Science Advances, 6, eaba6790, https://doi.org/10.1126/sciadv.aba6790, 2020.
Larsen, I. J. and Montgomery, D. R.: Landslide erosion coupled to tectonics
and river incision, Nat. Geosci., 5, 468–473, https://doi.org/10.1038/ngeo1479, 2012.
Lashermes, B., Foufoula-Georgiou, E., and Dietrich, W. E.: Channel network
extraction from high resolution topography using wavelets, Geophys. Res. Lett., 34, L23S04, https://doi.org/10.1029/2007GL031140, 2007.
Lovell, J. P. B.: Tyee Formation: Undeformed Turbidites and their Lateral
Equivalents: Mineralogy and Paleogeography, Geol. Soc. Am. Bull., 80, 9–22,
https://doi.org/10.1130/0016-7606(1969)80[9:TFUTAT]2.0.CO;2, 1969.
Malamud, B. D. and Turcotte, D. L.: Wavelet analyses of Mars polar
topography, J. Geophys. Res., 106, 17497–17504,
https://doi.org/10.1029/2000JE001333, 2001.
Marshall, J. A. and Roering, J. J.: Diagenetic variation in the Oregon Coast
Range: Implications for rock strength, soil production, hillslope form, and
landscape evolution, J. Geophys. Res.-Earth, 119, 1395–1417, https://doi.org/10.1002/2013JF003004, 2014.
Marshall, J. A., Roering, J. J., Bartlein, P. J., Gavin, D. G., Granger, D. E., Rempel, A. W., Praskievicz, S. J., and Hales, T. C.: Frost for the trees: Did climate increase erosion in unglaciated landscapes during the late
Pleistocene?, Science Advances, 1, e1500715,
https://doi.org/10.1126/sciadv.1500715, 2015.
Minár, J., Evans, I. S., and Jenčo, M.: A comprehensive system of
definitions of land surface (topographic) curvatures, with implications for
their application in geoscience modelling and prediction, Earth-Sci. Rev., 211, 103414, https://doi.org/10.1016/j.earscirev.2020.103414, 2020.
Mohren, J., Binnie, S. A., Ritter, B., and Dunai, T. J.: Development of a
steep erosional gradient over a short distance in the hyperarid core of the
Atacama Desert, northern Chile, Global Planet. Change, 184, 103068,
https://doi.org/10.1016/j.gloplacha.2019.103068, 2020.
Montgomery, D. R.: Slope distributions, threshold hillslopes, and
steady-state topography, Am. J. Sci., 301, 432–454, 2001.
Montgomery, D. R.: Soil erosion and agricultural sustainability, P. Natl. Acad. Sci. USA, 104, 13268–13272, https://doi.org/10.1073/pnas.0611508104, 2007.
Moore, I. D., Grayson, R. B., and Ladson, A. R.: Digital terrain modelling: A
review of hydrological, geomorphological, and biological applications,
Hydrol. Process., 5, 3–30, https://doi.org/10.1002/hyp.3360050103, 1991.
Mudd, S. M.: Detection of transience in eroding landscapes: Detection of
Transience in Eroding Landscapes, Earth Surf. Proc. Land., 42, 24–41,
https://doi.org/10.1002/esp.3923, 2017.
Mudd, S. M. and Furbish, D. J.: Lateral migration of hillcrests in response
to channel incision in soil-mantled landscapes, J. Geophys. Res., 110, F04026, https://doi.org/10.1029/2005JF000313, 2005.
Mudd, S. M. and Furbish, D. J.: Responses of soil-mantled hillslopes to
transient channel incision rates, J. Geophys. Res., 112, F03S18,
https://doi.org/10.1029/2006JF000516, 2007.
Neely, A. B., DiBiase, R. A., Corbett, L. B., Bierman, P. R., and Caffee, M. W.: Bedrock fracture density controls on hillslope erodibility in steep, rocky landscapes with patchy soil cover, southern California, USA, Earth
Planet. Sc. Lett., 522, 186–197, https://doi.org/10.1016/j.epsl.2019.06.011, 2019.
Oregon Lidar Consortium and Oregon Department of Geology and Mineral Industries: available at: https://www.oregongeology.org/lidar/, last access: 14 September 2021.
Ouimet, W. B., Whipple, K. X., and Granger, D. E.: Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges, Geology, 37, 579–582, https://doi.org/10.1130/G30013A.1, 2009.
Passalacqua, P., Do Trung, T., Foufoula-Georgiou, E., Sapiro, G., and
Dietrich, W. E.: A geometric framework for channel network extraction from
lidar: Nonlinear diffusion and geodesic paths, J. Geophys. Res., 115, F01002, https://doi.org/10.1029/2009JF001254, 2010.
Pelletier, J. D. and Field, J. P.: Predicting the roughness length of turbulent flows over landscapes with multi-scale microtopography, Earth Surf. Dynam., 4, 391–405, https://doi.org/10.5194/esurf-4-391-2016, 2016.
Penck, W.: Morphological Analysis of Landforms, Macmillan, Indianapolis,
Indiana, 1953.
Penserini, B. D., Roering, J. J., and Streig, A.: A morphologic proxy for
debris flow erosion with application to the earthquake deformation cycle,
Cascadia Subduction Zone, USA, Geomorphology, 282, 150–161,
https://doi.org/10.1016/j.geomorph.2017.01.018, 2017.
Perron, J. T. and Royden, L.: An integral approach to bedrock river profile
analysis, Earth Surf. Proc. Land., 38, 570–576, https://doi.org/10.1002/esp.3302, 2013.
Perron, J. T., Kirchner, J. W., and Dietrich, W. E.: Spectral signatures of
characteristic spatial scales and nonfractal structure in landscapes, J. Geophys. Res., 113, F04003, https://doi.org/10.1029/2007JF000866, 2008.
Personius, S. F.: Late Quaternary stream incision and uplift in the forearc
of the Cascadia subduction zone, western Oregon, J. Geophys. Res.-Sol. Ea., 100, 20193–20210, https://doi.org/10.1029/95JB01684, 1995.
PRISM Climate Group: PRISM Climate Group: Oregon State University, Corvallis, OR, USA, available at: https://prism.oregonstate.edu (last access: 14 September 2021), 2016.
Reneau, S. L. and Dietrich, W. E.: Erosion rates in the southern Oregon Coast
Range: Evidence for an equilibrium between hillslope erosion and sediment
yield, Earth Surf. Proc. Land., 16, 307–322, https://doi.org/10.1002/esp.3290160405, 1991.
Richardson, P. W., Perron, J. T., and Schurr, N. D.: Influences of climate and life on hillslope sediment transport, Geology, 47, 423–426, https://doi.org/10.1130/G45305.1, 2019.
Roberts, G. G. and White, N.: Estimating uplift rate histories from river profiles using African examples, J. Geophys. Res., 115, B02406,
https://doi.org/10.1029/2009JB006692, 2010.
Roering, J. J.: How well can hillslope evolution models “explain”
topography? Simulating soil transport and production with high-resolution
topographic data, Geol. Soc. Am. Bull., 120, 1248–1262, https://doi.org/10.1130/B26283.1, 2008.
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for nonlinear,
diffusive sediment transport on hillslopes and implications for landscape
morphology, Water Resour. Res., 35, 853–870,
https://doi.org/10.1029/1998WR900090, 1999.
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Hillslope evolution by
nonlinear, slope-dependent transport: Steady state morphology and
equilibrium adjustment timescales, J. Geophys. Res., 106,
16499–16513, https://doi.org/10.1139/t01-031, 2001.
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Characterizing structural and lithologic controls on deep-seated landsliding: Implications for topographic relief and landscape evolution in the Oregon Coast Range, USA, Geol. Soc. Am. Bull., 117, 654–668, https://doi.org/10.1130/B25567.1, 2005.
Roering, J. J., Perron, J. T., and Kirchner, J. W.: Functional relationships
between denudation and hillslope form and relief, Earth Planet. Sc. Lett., 264, 245–258, https://doi.org/10.1016/j.epsl.2007.09.035, 2007.
Roering, J. J., Marshall, J., Booth, A. M., Mort, M., and Jin, Q.: Evidence
for biotic controls on topography and soil production, Earth Planet. Sc. Lett., 298, 183–190, https://doi.org/10.1016/j.epsl.2010.07.040, 2010.
Roth, D. L., Doane, T. H., Roering, J. J., Furbish, D. J., and Zettler-Mann, A.: Particle motion on burned and vegetated hillslopes, P. Natl. Acad. Sci. USA, 117, 25335–25343, https://doi.org/10.1073/pnas.1922495117, 2020.
Royden, L. and Perron, J. T.: Solutions of the stream power equation and
application to the evolution of river longitudinal profiles, J. Geophys. Res.-Earth, 118, 497–518, https://doi.org/10.1002/jgrf.20031, 2013.
Scherler, D. and Schwanghart, W.: Drainage divide networks – Part 1: Identification and ordering in digital elevation models, Earth Surf. Dynam., 8, 245–259, https://doi.org/10.5194/esurf-8-245-2020, 2020.
Schumm, S. A.: Rates of Surficial Rock Creep on Hillslopes in Western
Colorado, Science, 155, 560–562, https://doi.org/10.1126/science.155.3762.560, 1967.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014 (available at: https://topotoolbox.wordpress.com/download, last access: 14 September 2021).
Stock, J. and Dietrich, W. E.: Valley incision by debris flows: Evidence of
a topographic signature, Water Resour. Res., 39, 1089,
https://doi.org/10.1029/2001WR001057, 2003.
Strahler, A. N.: Equilibrium theory of erosional slopes approached by
frequency distribution analysis; Part 1, Am. J. Sci., 248, 673–696, https://doi.org/10.2475/ajs.248.10.673, 1950.
Struble, W. T.: HilltopCurvature, GitHub [code], available at:
https://github.com/wtstruble, last access: 14 September 2021.
Struble, W. T., Roering, J. J., Dorsey, R. J., and Bendick, R.: Characteristic Scales of Drainage Reorganization in Cascadia, Geophys. Res. Lett., 48, e2020GL091413, https://doi.org/10.1029/2020GL091413, 2021.
Sweeney, K. E., Roering, J. J., Almond, P., and Reckling, T.: How steady are
steady-state landscapes? Using visible–near-infrared soil spectroscopy to
quantify erosional variability, Geology, 40, 807–810, https://doi.org/10.1130/G33167.1, 2012.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78, 1998.
Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L., and Chen, C.-Y.:
Dynamic Reorganization of River Basins, Science, 343, 1248765–1248765,
https://doi.org/10.1126/science.1248765, 2014.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou,
K., Crosby, B., and Sheehan, D.: Tectonics from topography: Procedures,
promise, and pitfalls, in: Special Paper 398: Tectonics, Climate, and
Landscape Evolution, Geological Society of America, 55–74,
https://doi.org/10.1130/2006.2398(04), 2006.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(15337 KB) - Full-text XML
- Corrigendum
-
Supplement
(2646 KB) - BibTeX
- EndNote
Short summary
We used a mathematical technique known as a wavelet transform to calculate the curvature of hilltops in western Oregon, which we used to estimate erosion rate. We find that this technique operates over 1000 times faster than other techniques and produces accurate erosion rates. We additionally built artificial hillslopes to test the accuracy of curvature measurement methods. We find that at fast erosion rates, curvature is underestimated, raising questions of measurement accuracy elsewhere.
We used a mathematical technique known as a wavelet transform to calculate the curvature of...