Articles | Volume 9, issue 6
https://doi.org/10.5194/esurf-9-1545-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1545-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Graphically interpreting how incision thresholds influence topographic and scaling properties of modeled landscapes
Nikos Theodoratos
CORRESPONDING AUTHOR
Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland
James W. Kirchner
Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland
Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
Related authors
No articles found.
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024, https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
Short summary
Here, I present a new way to quantify how streamflow responds to rainfall across a range of timescales. This approach can estimate how different rainfall intensities affect streamflow. It can also quantify how runoff response to rainfall varies, depending on how wet the landscape already is before the rain falls. This may help us to understand processes and landscape properties that regulate streamflow and to assess the susceptibility of different landscapes to flooding.
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4295–4308, https://doi.org/10.5194/hess-28-4295-2024, https://doi.org/10.5194/hess-28-4295-2024, 2024
Short summary
Short summary
We use a 3-year time series of tracer data of streamflow and soils to show how water moves through the subsurface to become streamflow. Less than 50% of soil water consists of rainfall from the last 3 weeks. Most annual streamflow is older than 3 months, and waters in deep subsurface layers are even older; thus deep layers are not the only source of streamflow. After wet periods more rainfall was found in the subsurface and the stream, suggesting that water moves quicker through wet landscapes.
Marius G. Floriancic, Michael P. Stockinger, James W. Kirchner, and Christine Stumpp
Hydrol. Earth Syst. Sci., 28, 3675–3694, https://doi.org/10.5194/hess-28-3675-2024, https://doi.org/10.5194/hess-28-3675-2024, 2024
Short summary
Short summary
The Alps are a key water resource for central Europe, providing water for drinking, agriculture, and hydropower production. To assess water availability in streams, we need to understand how much streamflow is derived from old water stored in the subsurface versus more recent precipitation. We use tracer data from 32 Alpine streams and statistical tools to assess how much recent precipitation can be found in Alpine rivers and how this amount is related to catchment properties and climate.
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024, https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Short summary
We study the seasonal and spatial patterns of soil moisture in 0–500 cm soil using 89 monitoring sites in a loess catchment with monsoonal climate. Soil moisture is highest during the months of least precipitation and vice versa. Soil moisture patterns at the hillslope scale are dominated by the aspect-controlled evapotranspiration variations (a local control), not by the hillslope convergence-controlled downslope flow (a nonlocal control), under both dry and wet conditions.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Scott T. Allen and James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-683, https://doi.org/10.5194/hess-2020-683, 2021
Revised manuscript not accepted
Short summary
Short summary
Extracting water from plant stems can introduce analytical errors in isotope analyses. We demonstrate that sensitivities to suspected errors can be evaluated and that conclusions drawn from extracted plant water isotope ratios are neither generally valid nor generally invalid. Ultimately, imperfect measurements of plant and soil water isotope ratios can continue to support useful inferences if study designs are appropriately matched to their likely biases and uncertainties.
Jana von Freyberg, Julia L. A. Knapp, Andrea Rücker, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020, https://doi.org/10.5194/hess-24-5821-2020, 2020
Short summary
Short summary
Automated water samplers are often used to collect precipitation and streamwater samples for subsequent isotope analysis, but the isotopic signal of these samples may be altered due to evaporative fractionation occurring during the storage inside the autosamplers in the field. In this article we present and evaluate a cost-efficient modification to the Teledyne ISCO automated water sampler that prevents isotopic enrichment through evaporative fractionation of the water samples.
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020, https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Short summary
This paper presents a new distributed hydrological model: the distributed simple dynamical systems (dS2) model. The model is built with a focus on computational efficiency and is therefore able to simulate basins at high spatial and temporal resolution at a low computational cost. Despite the simplicity of the model concept, it is able to correctly simulate discharge in both small and mesoscale basins.
James W. Kirchner and Julia L. A. Knapp
Hydrol. Earth Syst. Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020, https://doi.org/10.5194/hess-24-5539-2020, 2020
Short summary
Short summary
Ensemble hydrograph separation is a powerful new tool for measuring the age distribution of streamwater. However, the calculations are complex and may be difficult for researchers to implement on their own. Here we present scripts that perform these calculations in either MATLAB or R so that researchers do not need to write their own codes. We explain how these scripts work and how to use them. We demonstrate several potential applications using a synthetic catchment data set.
Marius G. Floriancic, Wouter R. Berghuijs, Tobias Jonas, James W. Kirchner, and Peter Molnar
Hydrol. Earth Syst. Sci., 24, 5423–5438, https://doi.org/10.5194/hess-24-5423-2020, https://doi.org/10.5194/hess-24-5423-2020, 2020
Short summary
Short summary
Low river flows affect societies and ecosystems. Here we study how precipitation and potential evapotranspiration shape low flows across a network of 380 Swiss catchments. Low flows in these rivers typically result from below-average precipitation and above-average potential evapotranspiration. Extreme low flows result from long periods of the combined effects of both drivers.
James W. Kirchner, Sarah E. Godsey, Madeline Solomon, Randall Osterhuber, Joseph R. McConnell, and Daniele Penna
Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, https://doi.org/10.5194/hess-24-5095-2020, 2020
Short summary
Short summary
Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration. These typically have a roughly 6 h time lag, which is often interpreted as a travel-time lag. Here we show that it is instead primarily a phase lag that arises because aquifers integrate their inputs over time. We further show how these cycles shift seasonally, mirroring the springtime retreat of snow cover to higher elevations and the seasonal advance and retreat of photosynthetic activity.
Elham Rouholahnejad Freund, Massimiliano Zappa, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5015–5025, https://doi.org/10.5194/hess-24-5015-2020, https://doi.org/10.5194/hess-24-5015-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) is the largest flux from the land to the atmosphere and thus contributes to Earth's energy and water balance. Due to its impact on atmospheric dynamics, ET is a key driver of droughts and heatwaves. In this paper, we demonstrate how averaging over land surface heterogeneity contributes to substantial overestimates of ET fluxes. We also demonstrate how one can correct for the effects of small-scale heterogeneity without explicitly representing it in land surface models.
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 8, 505–526, https://doi.org/10.5194/esurf-8-505-2020, https://doi.org/10.5194/esurf-8-505-2020, 2020
Short summary
Short summary
We non-dimensionalized a commonly used model of landscape evolution that includes an incision threshold. Whereas the original model included four parameters, we obtained a dimensionless form with a single parameter, which quantifies the relative importance of the incision threshold. Working with this form saves computational time and simplifies theoretical analyses.
Julia L. A. Knapp, Jana von Freyberg, Bjørn Studer, Leonie Kiewiet, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 2561–2576, https://doi.org/10.5194/hess-24-2561-2020, https://doi.org/10.5194/hess-24-2561-2020, 2020
Short summary
Short summary
Changes of stream water chemistry in response to discharge changes provide important insights into the storage and release of water from the catchment. Here we investigate the variability in concentration–discharge relationships among different solutes and hydrologic events and relate it to catchment conditions and dominant water sources.
Elham Rouholahnejad Freund, Ying Fan, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 1927–1938, https://doi.org/10.5194/hess-24-1927-2020, https://doi.org/10.5194/hess-24-1927-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) rates and properties that regulate them are spatially heterogeneous. Averaging over spatial heterogeneity in precipitation (P) and potential evapotranspiration (PET) as the main drivers of ET may lead to biased estimates of energy and water fluxes from the land to the atmosphere. We show that this bias is largest in mountainous terrains, in regions with temperate climates and dry summers, and in landscapes where spatial variations in P and PET are inversely correlated.
Francesc Gallart, Jana von Freyberg, María Valiente, James W. Kirchner, Pilar Llorens, and Jérôme Latron
Hydrol. Earth Syst. Sci., 24, 1101–1107, https://doi.org/10.5194/hess-24-1101-2020, https://doi.org/10.5194/hess-24-1101-2020, 2020
Short summary
Short summary
How catchments store and release rain or melting water is still not well known. Now, it is broadly accepted that most of the water in streams is older than several months, and a relevant part may be many years old. But the age of water depends on the stream regime, being usually younger during high flows. This paper tries to provide tools for better analysing how the age of waters varies with flow in a catchment and for comparing the behaviour of catchments diverging in climate, size and regime.
James W. Kirchner and Scott T. Allen
Hydrol. Earth Syst. Sci., 24, 17–39, https://doi.org/10.5194/hess-24-17-2020, https://doi.org/10.5194/hess-24-17-2020, 2020
Short summary
Short summary
Perhaps the oldest question in hydrology is
Where does water go when it rains?. Here we present a new way to measure how the terrestrial water cycle partitions precipitation into its two ultimate fates:
green waterthat is evaporated or transpired back to the atmosphere and
blue waterthat is discharged to stream channels. Our analysis may help in gauging the vulnerability of both water resources and terrestrial ecosystems to changes in rainfall patterns.
H. J. Ilja van Meerveld, James W. Kirchner, Marc J. P. Vis, Rick S. Assendelft, and Jan Seibert
Hydrol. Earth Syst. Sci., 23, 4825–4834, https://doi.org/10.5194/hess-23-4825-2019, https://doi.org/10.5194/hess-23-4825-2019, 2019
Short summary
Short summary
Flowing stream networks extend and retract seasonally and in response to precipitation. This affects the distances and thus the time that it takes a water molecule to reach the flowing stream and the stream outlet. When the network is fully extended, the travel times are short, but when the network retracts, the travel times become longer and more uniform. These dynamics should be included when modeling solute or pollutant transport.
Julia L. A. Knapp, Colin Neal, Alessandro Schlumpf, Margaret Neal, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 4367–4388, https://doi.org/10.5194/hess-23-4367-2019, https://doi.org/10.5194/hess-23-4367-2019, 2019
Short summary
Short summary
We describe, present, and make publicly available two extensive data sets of stable water isotopes in streamwater and precipitation at Plynlimon, Wales, consisting of measurements at 7-hourly intervals for 17 months and at weekly intervals for 4.25 years. We use these data to calculate new water fractions and transit time distributions for different discharge rates and seasons, thus quantifying the contribution of recent precipitation to streamflow under different conditions.
Scott T. Allen, Scott Jasechko, Wouter R. Berghuijs, Jeffrey M. Welker, Gregory R. Goldsmith, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 3423–3436, https://doi.org/10.5194/hess-23-3423-2019, https://doi.org/10.5194/hess-23-3423-2019, 2019
Short summary
Short summary
We developed global maps that concisely quantify the seasonality of stable isotope ratios in precipitation, using data from 653 meteorological stations across all seven continents. We make these gridded global maps publicly available to support diverse stable isotope applications.
Andrea Rücker, Stefan Boss, James W. Kirchner, and Jana von Freyberg
Hydrol. Earth Syst. Sci., 23, 2983–3005, https://doi.org/10.5194/hess-23-2983-2019, https://doi.org/10.5194/hess-23-2983-2019, 2019
Short summary
Short summary
To better understand how rain-on-snow (ROS) events affect snowpack outflow volumes and streamflow generation, we measured snowpack outflow volumes and isotopic composition during 10 ROS events with automated snowmelt lysimeters at three locations in a pre-Alpine catchment. We quantified the spatio-temporal variability of snowpack outflow and its relative contribution to streamflow, and identified rainfall characteristics and initial snow depth as major controls on snow hydrological processes.
Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, and Gregory R. Goldsmith
Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, https://doi.org/10.5194/hess-23-1199-2019, 2019
Short summary
Short summary
We used stable isotopes of xylem water to study differences in the seasonal origin of water in more than 900 individual trees from three dominant species in 182 Swiss forested sites. We discovered that midsummer transpiration was mostly supplied by winter precipitation across diverse humid climates. Our findings provide new insights into tree vulnerability to droughts, transport of water (and thus solutes) in soils, and the climatic information conveyed by plant-tissue isotopes.
James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 303–349, https://doi.org/10.5194/hess-23-303-2019, https://doi.org/10.5194/hess-23-303-2019, 2019
Short summary
Short summary
How long does it take for raindrops to become streamflow? Here I propose a new approach to this old problem. I show how we can use time series of isotope data to measure the average fraction of same-day rainfall appearing in streamflow, even if this fraction varies greatly from rainstorm to rainstorm. I show that we can quantify how this fraction changes from small rainstorms to big ones, and from high flows to low flows, and how it changes with the lag time between rainfall and streamflow.
Jana von Freyberg, Bjørn Studer, Michael Rinderer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 5847–5865, https://doi.org/10.5194/hess-22-5847-2018, https://doi.org/10.5194/hess-22-5847-2018, 2018
Short summary
Short summary
We show event- and pre-event-water volumes as fractions of precipitation, rather than discharge, to provide an alternative and more insightful approach to study catchment hydrological processes. For this, we analyze 24 storm events using high-frequency measurements of stable water isotopes in stream water and precipitation at a pre-Alpine catchment. Antecedent wetness and storm characteristics are dominant controls on event-water discharge and pre-event-water mobilization from storage.
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
Nikos Theodoratos, Hansjörg Seybold, and James W. Kirchner
Earth Surf. Dynam., 6, 779–808, https://doi.org/10.5194/esurf-6-779-2018, https://doi.org/10.5194/esurf-6-779-2018, 2018
Short summary
Short summary
We perform dimensional analysis on a frequently used landscape evolution model (LEM). Defining characteristic scales in a novel way, we significantly simplify the LEM and develop an efficient numerical modeling approach. Our characteristic scales are physically meaningful; they quantify competitions between landscape-forming processes and are related to salient properties of landscape topography. Dimensional analyses of other LEMs may benefit from our approach in defining characteristic scales.
Jana von Freyberg, Scott T. Allen, Stefan Seeger, Markus Weiler, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, https://doi.org/10.5194/hess-22-3841-2018, 2018
Short summary
Short summary
We explored how the fraction of streamflow younger than ca. 3 months (Fyw) varies with landscape characteristics and climatic forcing, using an extensive isotope data set from 22 Swiss catchments. Overall, Fyw tends to be larger when catchments are wet and discharge is correspondingly higher, indicating an increase in the proportional contribution of faster flow paths at higher flows. We quantify this
discharge sensitivityof Fyw and relate it to the dominant streamflow-generating mechanisms.
Paolo Benettin, Till H. M. Volkmann, Jana von Freyberg, Jay Frentress, Daniele Penna, Todd E. Dawson, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 2881–2890, https://doi.org/10.5194/hess-22-2881-2018, https://doi.org/10.5194/hess-22-2881-2018, 2018
Short summary
Short summary
Evaporation causes the isotopic composition of soil water to become different from that of the original precipitation source. If multiple samples originating from the same source are available, they can be used to reconstruct the original source composition. However, soil water is influenced by seasonal variability in both precipitation sources and evaporation patterns. We show that this variability, if not accounted for, can lead to biased estimates of the precipitation source water.
Albrecht von Boetticher, Jens M. Turowski, Brian W. McArdell, Dieter Rickenmann, Marcel Hürlimann, Christian Scheidl, and James W. Kirchner
Geosci. Model Dev., 10, 3963–3978, https://doi.org/10.5194/gmd-10-3963-2017, https://doi.org/10.5194/gmd-10-3963-2017, 2017
Short summary
Short summary
The open-source fluid dynamic solver presented in v. Boetticher et al. (2016) combines a Coulomb viscosplastic rheological model with a Herschel–Bulkley model based on material properties for 3-D debris flow simulations. Here, we validate the solver and illustrate the model sensitivity to water content, channel curvature, content of fine material and channel bed roughness. We simulate both laboratory-scale and large-scale debris-flow experiments, using only one of the two calibration parameters.
Jana von Freyberg, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 21, 1721–1739, https://doi.org/10.5194/hess-21-1721-2017, https://doi.org/10.5194/hess-21-1721-2017, 2017
Short summary
Short summary
We present a newly developed instrument package that enables the online analysis of stable water isotopes and major ion chemistry at 30 min intervals in the field. The resulting data streams provide an unprecedented view of hydrochemical dynamics on the catchment scale. Based on a detailed analysis of the variable behavior of isotopic and chemical tracers in stream water and precipitation over a 4-week period, we developed a conceptual hypothesis for runoff generation in the studied catchment.
Elham Rouholahnejad Freund and James W. Kirchner
Hydrol. Earth Syst. Sci., 21, 217–233, https://doi.org/10.5194/hess-21-217-2017, https://doi.org/10.5194/hess-21-217-2017, 2017
Short summary
Short summary
Our analysis shows that averaging over sub-grid heterogeneity in precipitation and potential evapotranspiration (ET), as typical earth system models do, overestimates the average of the spatially variable ET. We also show when aridity index increases with altitude, lateral redistribution would transfer water from more humid uplands to more arid lowlands, resulting in a net increase in ET. Therefore, the Earth system models that neglect lateral transfer underestimate ET in those regions.
Alexander R. Beer, James W. Kirchner, and Jens M. Turowski
Earth Surf. Dynam., 4, 885–894, https://doi.org/10.5194/esurf-4-885-2016, https://doi.org/10.5194/esurf-4-885-2016, 2016
Short summary
Short summary
Spatial bedrock erosion data from stream channels are important for engineering issues and landscape evolution model assessment. However, acquiring such data is challenging and only few data sets exist. Detecting changes in repeated photographs of painted bedrock surfaces easily allows for semi-quantitative conclusions on the spatial distribution of sediment transport and its effects: abrasion on surfaces facing the streamflow and shielding of surfaces by abundant sediment.
Albrecht von Boetticher, Jens M. Turowski, Brian W. McArdell, Dieter Rickenmann, and James W. Kirchner
Geosci. Model Dev., 9, 2909–2923, https://doi.org/10.5194/gmd-9-2909-2016, https://doi.org/10.5194/gmd-9-2909-2016, 2016
Short summary
Short summary
Debris flows are characterized by unsteady flows of water with different content of clay, silt, sand, gravel, and large particles, resulting in a dense moving mixture mass. Here we present a three-dimensional fluid dynamic solver that simulates the flow as a mixture of a pressure-dependent rheology model of the gravel mixed with a Herschel–Bulkley rheology of the fine material suspension. We link rheological parameters to the material composition. The user must specify two free model parameters.
J. W. Kirchner
Hydrol. Earth Syst. Sci., 20, 279–297, https://doi.org/10.5194/hess-20-279-2016, https://doi.org/10.5194/hess-20-279-2016, 2016
Short summary
Short summary
Catchment mean transit times have been widely inferred from seasonal cycles of environmental tracers in precipitation and streamflow. Here I show that these cycles yield strongly biased estimates of mean transit times in spatially heterogeneous catchments (and, by implication, in real-world catchments). However, I also show that these cycles can be used to reliably estimate the fraction of "young" water in streamflow, meaning water that fell as precipitation less than roughly 2–3 months ago.
J. W. Kirchner
Hydrol. Earth Syst. Sci., 20, 299–328, https://doi.org/10.5194/hess-20-299-2016, https://doi.org/10.5194/hess-20-299-2016, 2016
Short summary
Short summary
Here I show that seasonal tracer cycles yield strongly biased estimates of mean transit times in nonstationary catchments (and, by implication, in real-world catchments). However, they can be used to reliably estimate the fraction of "young" water in streamflow, meaning water that fell as precipitation less than roughly 2–3 months ago. This young water fraction varies systematically between high and low flows and may help in characterizing controls on stream chemistry.
F. Kobierska, T. Jonas, J. W. Kirchner, and S. M. Bernasconi
Hydrol. Earth Syst. Sci., 19, 3681–3693, https://doi.org/10.5194/hess-19-3681-2015, https://doi.org/10.5194/hess-19-3681-2015, 2015
A. von Boetticher, J. M. Turowski, B. W. McArdell, D. Rickenmann, M. Hürlimann, C. Scheidl, and J. W. Kirchner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-6379-2015, https://doi.org/10.5194/gmdd-8-6379-2015, 2015
Preprint withdrawn
F. U. M. Heimann, D. Rickenmann, J. M. Turowski, and J. W. Kirchner
Earth Surf. Dynam., 3, 15–34, https://doi.org/10.5194/esurf-3-15-2015, https://doi.org/10.5194/esurf-3-15-2015, 2015
F. U. M. Heimann, D. Rickenmann, M. Böckli, A. Badoux, J. M. Turowski, and J. W. Kirchner
Earth Surf. Dynam., 3, 35–54, https://doi.org/10.5194/esurf-3-35-2015, https://doi.org/10.5194/esurf-3-35-2015, 2015
Related subject area
Physical: Landscape Evolution: modelling and field studies
Drainage rearrangement in an intra-continental mountain belt: a case study from the central South Tian Shan, Kyrgyzstan
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for Landscape Evolution Models
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Flexural isostatic response of continental-scale deltas to climatically driven sea level changes
Scaling between volume and runout of rock avalanches explained by a modified Voellmy rheology
Past anthropogenic land use change caused a regime shift of the fluvial response to Holocene climate change in the Chinese Loess Plateau
Steady-state forms of channel profiles shaped by debris flow and fluvial processes
Refining patterns of melt with forward stratigraphic models of stable Pleistocene coastlines
Optimising global landscape evolution models with 10Be
Self-organization of channels and hillslopes in models of fluvial landform evolution and its potential for solving scaling issues
Stream laws in analog tectonic-landscape models
Short Communication: Motivation for standardizing and normalizing inter-model comparison of computational landscape evolution models
A control volume finite-element model for predicting the morphology of cohesive-frictional debris flow deposits
Knickpoints and Fixpoints: The Evolution of Fluvial Morphology under the Combined Effect of Fault Uplift and Dam Obstruction on a Soft Bedrock River
Erosion and weathering in carbonate regions reveal climatic and tectonic drivers of carbonate landscape evolution
Patterns and rates of soil movement and shallow failures across several small watersheds on the Seward Peninsula, Alaska
River incision, 10Be production and transport in a source-to-sink sediment system (Var catchment, SW Alps)
Simulating the effect of subsurface drainage on the thermal regime and ground ice in blocky terrain in Norway
An experimental study of drainage network development by surface and subsurface flow in low-gradient landscapes
The push and pull of abandoned channels: how floodplain processes and healing affect avulsion dynamics and alluvial landscape evolution in foreland basins
Climate changes and the formation of fluvial terraces in central Amazonia inferred from landscape evolution modeling
Investigation of stochastic-threshold incision models across a climatic and morphological gradient
Comparing the transport-limited and ξ–q models for sediment transport
Autogenic knickpoints in laboratory landscape experiments
Transmissivity and groundwater flow exert a strong influence on drainage density
Escarpment retreat rates derived from detrital cosmogenic nuclide concentrations
Hilltop curvature as a proxy for erosion rate: wavelets enable rapid computation and reveal systematic underestimation
Short communication: Analytical models for 2D landscape evolution
Effect of rock uplift and Milankovitch timescale variations in precipitation and vegetation cover on catchment erosion rates
Modeling glacial and fluvial landform evolution at large scales using a stream-power approach
Topographic disequilibrium, landscape dynamics and active tectonics: an example from the Bhutan Himalaya
Last-glacial-cycle glacier erosion potential in the Alps
The rate and extent of wind-gap migration regulated by tributary confluences and avulsions
Inferring potential landslide damming using slope stability, geomorphic constraints, and run-out analysis: a case study from the NW Himalaya
Groundwater erosion of coastal gullies along the Canterbury coast (New Zealand): a rapid and episodic process controlled by rainfall intensity and substrate variability
Erosional response of granular material in landscape models
Transport-limited fluvial erosion – simple formulation and efficient numerical treatment
Dimensional analysis of a landscape evolution model with incision threshold
Computing water flow through complex landscapes – Part 2: Finding hierarchies in depressions and morphological segmentations
Rivers as linear elements in landform evolution models
Interactions between main channels and tributary alluvial fans: channel adjustments and sediment-signal propagation
Drainage divide networks – Part 1: Identification and ordering in digital elevation models
Drainage divide networks – Part 2: Response to perturbations
Hillslope denudation and morphologic response to a rock uplift gradient
Geomorphic signatures of the transient fluvial response to tilting
The destiny of orogen-parallel streams in the Eastern Alps: the Salzach–Enns drainage system
Statistical modelling of co-seismic knickpoint formation and river response to fault slip
A versatile, linear complexity algorithm for flow routing in topographies with depressions
Can the growth of deltaic shorelines be unstable?
Development of proglacial lakes and evaluation of related outburst susceptibility at the Adygine ice-debris complex, northern Tien Shan
Lingxiao Gong, Peter van der Beek, Taylor F. Schildgen, Edward R. Sobel, Simone Racano, Apolline Mariotti, and Fergus McNab
Earth Surf. Dynam., 12, 973–994, https://doi.org/10.5194/esurf-12-973-2024, https://doi.org/10.5194/esurf-12-973-2024, 2024
Short summary
Short summary
We choose the large Saryjaz river from South Tian Shan to analyse topographic and fluvial metrics. By quantifying the spatial distribution of major metrics and comparing with modelling patterns, we suggest that the observed transience was triggered by a big capture event during the Plio-Pleistocene and potentially affected by both tectonic and climate factors. This conclusion underlines the importance of local contingent factors in driving drainage development.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Guillaume Adrien Bernard
EGUsphere, https://doi.org/10.5194/egusphere-2024-1239, https://doi.org/10.5194/egusphere-2024-1239, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations describing water flow at the surface of the earth. From quantitative information about rain and elevation, GraphFlood allow the calculation of river width, depth and allow the approximation of erosive power making it a suitable tool for large-scale hazard management or to comprehend the link between rivers and mountains.
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2024-1070, https://doi.org/10.5194/egusphere-2024-1070, 2024
Short summary
Short summary
Toma hills are more or less isolated hills in the deposits of rock avalanches and their origin is still enigmatic. This paper presents results of numerical simulations based on a modified version of a friction law that was originally introduced for snow avalanches. The model produces more or less isolated hills on the valley floor, which look much like toma hills. The results presented here provide the perhaps first explanation for the occurrence of toma hills based on a numerical model.
Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, and Louis Moresi
Earth Surf. Dynam., 12, 301–320, https://doi.org/10.5194/esurf-12-301-2024, https://doi.org/10.5194/esurf-12-301-2024, 2024
Short summary
Short summary
Two-thirds of the world's most populated cities are situated close to deltas. We use computer simulations to understand how deltas sink or rise in response to climate-driven sea level changes that operate from thousands to millions of years. Our research shows that because of the interaction between the outer layers of the Earth, sediment transport, and sea level changes deltas develop a self-regulated mechanism that modifies the space they need to gain or lose land.
Stefan Hergarten
Earth Surf. Dynam., 12, 219–229, https://doi.org/10.5194/esurf-12-219-2024, https://doi.org/10.5194/esurf-12-219-2024, 2024
Short summary
Short summary
Large landslides turn into an avalanche-like mode of flow at high velocities, which allows for a much longer runout than predicted for a sliding solid body. In this study, the Voellmy rheology widely used in models for hazard assessment is reinterpreted and extended. The new approach predicts the increase in runout length with volume observed in nature quite well and may thus be a major step towards a more consistent modeling of rock avalanches and improved hazard assessment.
Hao Chen, Xianyan Wang, Yanyan Yu, Huayu Lu, and Ronald Van Balen
Earth Surf. Dynam., 12, 163–180, https://doi.org/10.5194/esurf-12-163-2024, https://doi.org/10.5194/esurf-12-163-2024, 2024
Short summary
Short summary
The Wei River catchment, one of the centers of the agricultural revolution in China, has experienced intense land use changes since 6000 BCE. This makes it an ideal place to study the response of river systems to anthropogenic land use change. Modeling results show the sensitivity of discharge and sediment yield to climate change increased abruptly when the agricultural land area exceeded a threshold at around 1000 BCE. This regime shift in the fluvial catchment led to a large sediment pulse.
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam., 11, 1117–1143, https://doi.org/10.5194/esurf-11-1117-2023, https://doi.org/10.5194/esurf-11-1117-2023, 2023
Short summary
Short summary
Debris flows are mixtures of mud and rocks that can travel at high speeds across steep landscapes. Here, we propose a new model to describe how landscapes are shaped by debris flow erosion over long timescales. Model results demonstrate that the shapes of channel profiles are sensitive to uplift rate, meaning that it may be possible to use topographic data from steep channel networks to infer how erosion rates vary across a landscape.
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023, https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Gregory A. Ruetenik, John D. Jansen, Pedro Val, and Lotta Ylä-Mella
Earth Surf. Dynam., 11, 865–880, https://doi.org/10.5194/esurf-11-865-2023, https://doi.org/10.5194/esurf-11-865-2023, 2023
Short summary
Short summary
We compare models of erosion against a global compilation of long-term erosion rates in order to find and interpret best-fit parameters using an iterative search. We find global signals among exponents which control the relationship between erosion rate and slope, as well as other parameters which are common in long-term erosion modelling. Finally, we analyse the global variability in parameters and find a correlation between precipitation and coefficients for optimised models.
Stefan Hergarten and Alexa Pietrek
Earth Surf. Dynam., 11, 741–755, https://doi.org/10.5194/esurf-11-741-2023, https://doi.org/10.5194/esurf-11-741-2023, 2023
Short summary
Short summary
The transition from hillslopes to channelized flow is typically attributed to a threshold catchment size in landform evolution models. Here we propose an alternative concept directly based on topography. Using this concept, channels and hillslopes self-organize, whereby the catchment size of the channel heads varies over some range. Our numerical results suggest that this concept works better than the established idea of a strict threshold catchment size.
Riccardo Reitano, Romano Clementucci, Ethan M. Conrad, Fabio Corbi, Riccardo Lanari, Claudio Faccenna, and Chiara Bazzucchi
Earth Surf. Dynam., 11, 731–740, https://doi.org/10.5194/esurf-11-731-2023, https://doi.org/10.5194/esurf-11-731-2023, 2023
Short summary
Short summary
Tectonics and surface processes work together in shaping orogens through their evolution. Laboratory models are used to overcome some limitations of direct observations since they allow for continuous and detailed analysis of analog orogens. We use a rectangular box filled with an analog material made of granular materials to study how erosional laws apply and how erosion affects the analog landscape as a function of the applied boundary conditions (regional slope and rainfall rate).
Nicole M. Gasparini, Katherine R. Barnhart, and Adam M. Forte
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2023-17, https://doi.org/10.5194/esurf-2023-17, 2023
Revised manuscript accepted for ESurf
Short summary
Short summary
Computational landscape evolution models (LEMs) show how landscapes change through time. There are many LEMs in the scientific community, but there are no standards for testing whether LEMs produce correct solutions or comparing output among LEMs. We present a comparison of three LEMs, illustrating both strengths and weaknesses. We hope our examples will motivate the LEM community to develop methods for inter-model comparison, which could help to avoid current and future modeling pitfalls.
Tzu-Yin Kasha Chen, Ying-Chen Wu, Chi-Yao Hung, Hervé Capart, and Vaughan R. Voller
Earth Surf. Dynam., 11, 325–342, https://doi.org/10.5194/esurf-11-325-2023, https://doi.org/10.5194/esurf-11-325-2023, 2023
Short summary
Short summary
Predicting the extent and thickness of debris flow deposits is important for assessing and mitigating hazards. We propose a simplified mass balance model for predicting the morphology of terminated debris flows depositing over complex topography. A key element in this model is that the termination of flow of the deposit is determined by prescribed values of yield stress and friction angle. The model results are consistent with available analytical solutions and field and laboratory observations.
Hung-En Chen, Yen-Yu Chiu, Chih-Yuan Cheng, and Su-Chin Chen
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2023-8, https://doi.org/10.5194/esurf-2023-8, 2023
Revised manuscript under review for ESurf
Short summary
Short summary
This study explores the fluvial morphology evolution in three rivers in Taiwan caused by natural tectonic movements (the 1999 Mw 7.6 Chi-Chi earthquake) and human-made structures (Dams). Knickpoints resulting from riverbed uplift move, leading to gradual evolution from instability to equilibrium. Dams, on the other hand, cause continuous degradation of the bed. When both effects exist on a reach, the impact of the knickpoint gradually fades away, but the results of the dam on the river persist.
Richard Ott, Sean F. Gallen, and David Helman
Earth Surf. Dynam., 11, 247–257, https://doi.org/10.5194/esurf-11-247-2023, https://doi.org/10.5194/esurf-11-247-2023, 2023
Short summary
Short summary
We compile data on carbonate denudation, the sum of mechanical erosion and chemical weathering, from cosmogenic nuclides and use them in conjunction with weathering data to constrain the partitioning of denudation into erosion and weathering. We show how carbonate erosion and weathering respond to different climatic and tectonic conditions and find that variations in denudation partitioning can be used to explain the vastly different morphology of carbonate landscapes on Earth.
Joanmarie Del Vecchio, Emma R. Lathrop, Julian B. Dann, Christian G. Andresen, Adam D. Collins, Michael M. Fratkin, Simon Zwieback, Rachel C. Glade, and Joel C. Rowland
Earth Surf. Dynam., 11, 227–245, https://doi.org/10.5194/esurf-11-227-2023, https://doi.org/10.5194/esurf-11-227-2023, 2023
Short summary
Short summary
In cold regions of the Earth, thawing permafrost can change the landscape, impact ecosystems, and lead to the release of greenhouse gases. In this study we used many observational tools to better understand how sediment moves on permafrost hillslopes. Some topographic change conforms to our understanding of slope stability and sediment transport as developed in temperate landscapes, but much of what we observed needs further explanation by permafrost-specific geomorphic models.
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023, https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Short summary
We present new tools in the landscape evolution model Badlands to simulate 10Be production, erosion and transport. These tools are applied to a source-to-sink system in the SW French Alps, where the model is calibrated. We propose a model that fits river incision rates and 10Be concentrations in sediments, and we show that 10Be in deep marine sediments is a signal with multiple contributions that cannot be easily interpreted in terms of climate forcing.
Cas Renette, Kristoffer Aalstad, Juditha Aga, Robin Benjamin Zweigel, Bernd Etzelmüller, Karianne Staalesen Lilleøren, Ketil Isaksen, and Sebastian Westermann
Earth Surf. Dynam., 11, 33–50, https://doi.org/10.5194/esurf-11-33-2023, https://doi.org/10.5194/esurf-11-33-2023, 2023
Short summary
Short summary
One of the reasons for lower ground temperatures in coarse, blocky terrain is a low or varying soil moisture content, which most permafrost modelling studies did not take into account. We used the CryoGrid community model to successfully simulate this effect and found markedly lower temperatures in well-drained, blocky deposits compared to other set-ups. The inclusion of this drainage effect is another step towards a better model representation of blocky mountain terrain in permafrost regions.
Brian G. Sockness and Karen B. Gran
Earth Surf. Dynam., 10, 581–603, https://doi.org/10.5194/esurf-10-581-2022, https://doi.org/10.5194/esurf-10-581-2022, 2022
Short summary
Short summary
To study channel network development following continental glaciation, we ran small physical experiments where networks slowly expanded into flat surfaces. By changing substrate and rainfall, we altered flow pathways between surface and subsurface. Initially, most channels grew by overland flow. As relief increased, erosion through groundwater sapping occurred, especially in runs with high infiltration and low cohesion, highlighting the importance of groundwater in channel network evolution.
Harrison K. Martin and Douglas A. Edmonds
Earth Surf. Dynam., 10, 555–579, https://doi.org/10.5194/esurf-10-555-2022, https://doi.org/10.5194/esurf-10-555-2022, 2022
Short summary
Short summary
River avulsions (rivers suddenly changing course) redirect water and sediment. These floods can harm people and control how some landscapes evolve. We model how abandoned channels from older avulsions affect where, when, and why future avulsions occur in mountain-front areas. We show that abandoned channels can push and pull avulsions, and the way they heal controls landscapes. Avulsion models should include abandoned channels; we also highlight opportunities for future field workers.
Ariel Henrique do Prado, Renato Paes de Almeida, Cristiano Padalino Galeazzi, Victor Sacek, and Fritz Schlunegger
Earth Surf. Dynam., 10, 457–471, https://doi.org/10.5194/esurf-10-457-2022, https://doi.org/10.5194/esurf-10-457-2022, 2022
Short summary
Short summary
Our work is focused on describing how and why the terrace levels of central Amazonia were formed during the last 100 000 years. We propose to address this question through a landscape evolution numerical model. Our results show that terrace levels at lower elevation were established in response to dry–wet climate changes and the older terrace levels at higher elevations most likely formed in response to a previously higher elevation of the regional base level.
Clément Desormeaux, Vincent Godard, Dimitri Lague, Guillaume Duclaux, Jules Fleury, Lucilla Benedetti, Olivier Bellier, and the ASTER Team
Earth Surf. Dynam., 10, 473–492, https://doi.org/10.5194/esurf-10-473-2022, https://doi.org/10.5194/esurf-10-473-2022, 2022
Short summary
Short summary
Landscape evolution is highly dependent on climatic parameters, and the occurrence of intense precipitation events is considered to be an important driver of river incision. We compare the rate of erosion with the variability of river discharge in a mountainous landscape of SE France where high-magnitude floods regularly occur. Our study highlights the importance of the hypotheses made regarding the threshold that river discharge needs to exceed in order to effectively cut down into the bedrock.
Jean Braun
Earth Surf. Dynam., 10, 301–327, https://doi.org/10.5194/esurf-10-301-2022, https://doi.org/10.5194/esurf-10-301-2022, 2022
Short summary
Short summary
By comparing two models for the transport of sediment, we find that they share a similar steady-state solution that adequately predicts the shape of most depositional systems made of a fan and an alluvial plain. The length of the fan is controlled by the size of the mountain drainage area feeding the sedimentary system and its slope by the incoming sedimentary flux. We show that the models differ in their transient behavior to external forcing and are characterized by different response times.
Léopold de Lavaissière, Stéphane Bonnet, Anne Guyez, and Philippe Davy
Earth Surf. Dynam., 10, 229–246, https://doi.org/10.5194/esurf-10-229-2022, https://doi.org/10.5194/esurf-10-229-2022, 2022
Short summary
Short summary
Rivers are known to record changes in tectonic or climatic variation through long adjustment of their longitudinal profile slope. Here we describe such adjustments in experimental landscapes and show that they may result from the sole effect of intrinsic geomorphic processes. We propose a new model of river evolution that links long profile adjustment to cycles of river widening and narrowing. This result emphasizes the need to better understand control of lateral erosion on river width.
Elco Luijendijk
Earth Surf. Dynam., 10, 1–22, https://doi.org/10.5194/esurf-10-1-2022, https://doi.org/10.5194/esurf-10-1-2022, 2022
Short summary
Short summary
The distance between rivers is a noticeable feature of the Earth's surface. Previous work has indicated that subsurface groundwater flow may be important for drainage density. Here, I present a new model that combines subsurface and surface water flow and erosion, and demonstrates that groundwater exerts an important control on drainage density. Streams that incise rapidly can capture the groundwater discharge of adjacent streams, which may cause these streams to become dry and stop incising.
Yanyan Wang and Sean D. Willett
Earth Surf. Dynam., 9, 1301–1322, https://doi.org/10.5194/esurf-9-1301-2021, https://doi.org/10.5194/esurf-9-1301-2021, 2021
Short summary
Short summary
Although great escarpment mountain ranges are characterized by high relief, modern erosion rates suggest slow rates of landscape change. We question this interpretation by presenting a new method for interpreting concentrations of cosmogenic isotopes. Our analysis shows that erosion has localized onto an escarpment face, driving retreat of the escarpment at high rates. Our quantification of this retreat rate rationalizes the high-relief, dramatic landscape with the rates of geomorphic change.
William T. Struble and Joshua J. Roering
Earth Surf. Dynam., 9, 1279–1300, https://doi.org/10.5194/esurf-9-1279-2021, https://doi.org/10.5194/esurf-9-1279-2021, 2021
Short summary
Short summary
We used a mathematical technique known as a wavelet transform to calculate the curvature of hilltops in western Oregon, which we used to estimate erosion rate. We find that this technique operates over 1000 times faster than other techniques and produces accurate erosion rates. We additionally built artificial hillslopes to test the accuracy of curvature measurement methods. We find that at fast erosion rates, curvature is underestimated, raising questions of measurement accuracy elsewhere.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Hemanti Sharma, Todd A. Ehlers, Christoph Glotzbach, Manuel Schmid, and Katja Tielbörger
Earth Surf. Dynam., 9, 1045–1072, https://doi.org/10.5194/esurf-9-1045-2021, https://doi.org/10.5194/esurf-9-1045-2021, 2021
Short summary
Short summary
We study effects of variable climate–vegetation with different uplift rates on erosion–sedimentation using a landscape evolution modeling approach. Results suggest that regardless of uplift rates, transients in precipitation–vegetation lead to transients in erosion rates in the same direction of change. Vegetation-dependent erosion and sedimentation are influenced by Milankovitch timescale changes in climate, but these transients are superimposed upon tectonically driven uplift rates.
Stefan Hergarten
Earth Surf. Dynam., 9, 937–952, https://doi.org/10.5194/esurf-9-937-2021, https://doi.org/10.5194/esurf-9-937-2021, 2021
Short summary
Short summary
This paper presents a new approach to modeling glacial erosion on large scales. The formalism is similar to large-scale models of fluvial erosion, so glacial and fluvial processes can be easily combined. The model is simpler and numerically less demanding than established models based on a more detailed description of the ice flux. The numerical implementation almost achieves the efficiency of purely fluvial models, so that simulations over millions of years can be performed on standard PCs.
Martine Simoes, Timothée Sassolas-Serrayet, Rodolphe Cattin, Romain Le Roux-Mallouf, Matthieu Ferry, and Dowchu Drukpa
Earth Surf. Dynam., 9, 895–921, https://doi.org/10.5194/esurf-9-895-2021, https://doi.org/10.5194/esurf-9-895-2021, 2021
Short summary
Short summary
Elevated low-relief regions and major river knickpoints have for long been noticed and questioned in the emblematic Bhutan Himalaya. We document the morphology of this region using morphometric analyses and field observations, at a variety of spatial scales. Our findings reveal a highly unstable river network, with numerous non-coeval river captures, most probably related to a dynamic response to local tectonic uplift in the mountain hinterland.
Julien Seguinot and Ian Delaney
Earth Surf. Dynam., 9, 923–935, https://doi.org/10.5194/esurf-9-923-2021, https://doi.org/10.5194/esurf-9-923-2021, 2021
Short summary
Short summary
Ancient Alpine glaciers have carved a fascinating landscape of piedmont lakes, glacial valleys, and mountain cirques. Using a previous supercomputer simulation of glacier flow, we show that glacier erosion has constantly evolved and moved to different parts of the Alps. Interestingly, larger glaciers do not always cause more rapid erosion. Instead, glacier erosion is modelled to slow down during glacier advance and peak during phases of retreat, such as the one the Earth is currently undergoing.
Eitan Shelef and Liran Goren
Earth Surf. Dynam., 9, 687–700, https://doi.org/10.5194/esurf-9-687-2021, https://doi.org/10.5194/esurf-9-687-2021, 2021
Short summary
Short summary
Drainage basins are bounded by water divides (divides) that define their shape and extent. Divides commonly coincide with high ridges, but in places that experienced extensive tectonic deformation, divides sometimes cross elongated valleys. Inspired by field observations and using simulations of landscape evolution, we study how side channels that drain to elongated valleys induce pulses of divide migration, affecting the distribution of water and erosion products across mountain ranges.
Vipin Kumar, Imlirenla Jamir, Vikram Gupta, and Rajinder K. Bhasin
Earth Surf. Dynam., 9, 351–377, https://doi.org/10.5194/esurf-9-351-2021, https://doi.org/10.5194/esurf-9-351-2021, 2021
Short summary
Short summary
Despite a history of landslide damming and flash floods in the NW Himalaya, only a few studies have been performed. This study predicts some potential landslide damming sites in the Satluj valley, NW Himalaya, using field observations, laboratory analyses, geomorphic proxies, and numerical simulations. Five landslides, comprising a total landslide volume of 26.3 ± 6.7 M m3, are found to have the potential to block the river in the case of slope failure.
Aaron Micallef, Remus Marchis, Nader Saadatkhah, Potpreecha Pondthai, Mark E. Everett, Anca Avram, Alida Timar-Gabor, Denis Cohen, Rachel Preca Trapani, Bradley A. Weymer, and Phillipe Wernette
Earth Surf. Dynam., 9, 1–18, https://doi.org/10.5194/esurf-9-1-2021, https://doi.org/10.5194/esurf-9-1-2021, 2021
Short summary
Short summary
We study coastal gullies along the Canterbury coast of New Zealand using field observations, sample analyses, drones, satellites, geophysical instruments and modelling. We show that these coastal gullies form when rainfall intensity is higher than 40 mm per day. The coastal gullies are formed by landslides where buried channels or sand lenses are located. This information allows us to predict where coastal gullies may form in the future.
Riccardo Reitano, Claudio Faccenna, Francesca Funiciello, Fabio Corbi, and Sean D. Willett
Earth Surf. Dynam., 8, 973–993, https://doi.org/10.5194/esurf-8-973-2020, https://doi.org/10.5194/esurf-8-973-2020, 2020
Short summary
Short summary
Looking into processes that occur on different timescales that span over thousands or millions of years is difficult to achieve. This is the case when we try to understand the interaction between tectonics and surface processes. Analog modeling is an investigating technique that can overcome this limitation. We study the erosional response of an analog landscape by varying the concentration of components of analog materials that strongly affect the evolution of experimental landscapes.
Stefan Hergarten
Earth Surf. Dynam., 8, 841–854, https://doi.org/10.5194/esurf-8-841-2020, https://doi.org/10.5194/esurf-8-841-2020, 2020
Short summary
Short summary
Many contemporary models of large-scale fluvial erosion focus on the detachment-limited regime where all material entrained by the river is immediately excavated. This limitation facilitates the comparison with real river profiles and strongly reduces the numerical complexity. Here a simple formulation for the opposite case, transport-limited erosion, and a new numerical scheme that achieves almost the same numerical efficiency as detachment-limited models are presented.
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 8, 505–526, https://doi.org/10.5194/esurf-8-505-2020, https://doi.org/10.5194/esurf-8-505-2020, 2020
Short summary
Short summary
We non-dimensionalized a commonly used model of landscape evolution that includes an incision threshold. Whereas the original model included four parameters, we obtained a dimensionless form with a single parameter, which quantifies the relative importance of the incision threshold. Working with this form saves computational time and simplifies theoretical analyses.
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 8, 431–445, https://doi.org/10.5194/esurf-8-431-2020, https://doi.org/10.5194/esurf-8-431-2020, 2020
Short summary
Short summary
Maps of elevation are used to help predict the flow of water so we can better understand landslides, floods, and global climate change. However, modeling the flow of water is difficult when elevation maps include swamps, lakes, and other depressions. This paper explains a new method that overcomes these difficulties, allowing models to run faster and more accurately.
Stefan Hergarten
Earth Surf. Dynam., 8, 367–377, https://doi.org/10.5194/esurf-8-367-2020, https://doi.org/10.5194/esurf-8-367-2020, 2020
Short summary
Short summary
Models of fluvial erosion have a long history in landform evolution modeling. Interactions between rivers and processes acting at hillslopes (e.g., landslides) are receiving growing interest in this context. While present-day computer capacities allow for applying such coupled models, there is still a scaling problem when considering rivers to be linear elements on a topography. Based on a reinterpretation of old empirical results, this study presents a new approach to overcome this problem.
Sara Savi, Stefanie Tofelde, Andrew D. Wickert, Aaron Bufe, Taylor F. Schildgen, and Manfred R. Strecker
Earth Surf. Dynam., 8, 303–322, https://doi.org/10.5194/esurf-8-303-2020, https://doi.org/10.5194/esurf-8-303-2020, 2020
Short summary
Short summary
Fluvial deposits record changes in water and sediment supply. As such, they are often used to reconstruct the tectonic or climatic history of a basin. In this study we used an experimental setting to analyze how fluvial deposits register changes in water or sediment supply at a confluence zone. We provide a new conceptual framework that may help understanding the construction of these deposits under different forcings conditions, information crucial to correctly inferring the history of a basin.
Dirk Scherler and Wolfgang Schwanghart
Earth Surf. Dynam., 8, 245–259, https://doi.org/10.5194/esurf-8-245-2020, https://doi.org/10.5194/esurf-8-245-2020, 2020
Short summary
Short summary
Drainage divides are believed to provide clues about divide migration and the instability of landscapes. Here, we present a novel approach to extract drainage divides from digital elevation models and to order them in a drainage divide network. We present our approach by studying natural and artificial landscapes generated with a landscape evolution model and disturbed to induce divide migration.
Dirk Scherler and Wolfgang Schwanghart
Earth Surf. Dynam., 8, 261–274, https://doi.org/10.5194/esurf-8-261-2020, https://doi.org/10.5194/esurf-8-261-2020, 2020
Short summary
Short summary
Drainage divides are believed to provide clues about divide migration and the instability of landscapes. Here, we present a novel approach to extract drainage divides from digital elevation models and to order them in a drainage divide network. We present our approach by studying natural and artificial landscapes generated with a landscape evolution model and disturbed to induce divide migration.
Vincent Godard, Jean-Claude Hippolyte, Edward Cushing, Nicolas Espurt, Jules Fleury, Olivier Bellier, Vincent Ollivier, and the ASTER Team
Earth Surf. Dynam., 8, 221–243, https://doi.org/10.5194/esurf-8-221-2020, https://doi.org/10.5194/esurf-8-221-2020, 2020
Short summary
Short summary
Slow-slipping faults are often difficult to identify in landscapes. Here we analyzed high-resolution topographic data from the Valensole area at the front of the southwestern French Alps. We measured various properties of hillslopes such as their relief and the shape of hilltops. We observed systematic spatial variations of hillslope morphology indicative of relative changes in erosion rates. These variations are potentially related to slow tectonic deformation across the studied area.
Helen W. Beeson and Scott W. McCoy
Earth Surf. Dynam., 8, 123–159, https://doi.org/10.5194/esurf-8-123-2020, https://doi.org/10.5194/esurf-8-123-2020, 2020
Short summary
Short summary
We used a computer model to show that, when a landscape is tilted, rivers respond in a distinct way such that river profiles take on unique forms that record tilt timing and magnitude. Using this suite of river forms, we estimated tilt timing and magnitude in the Sierra Nevada, USA, and results were consistent with independent measures. Our work broadens the scope of tectonic histories that can be extracted from landscape form to include tilting, which has been documented in diverse locations.
Georg Trost, Jörg Robl, Stefan Hergarten, and Franz Neubauer
Earth Surf. Dynam., 8, 69–85, https://doi.org/10.5194/esurf-8-69-2020, https://doi.org/10.5194/esurf-8-69-2020, 2020
Short summary
Short summary
The evolution of the drainage system in the Eastern Alps is inherently linked to different tectonic stages. This leads to a situation in which major orogen-parallel alpine rivers, such as the Salzach and the Enns, are characterized by elongated east–west-oriented catchments. We investigate the stability of present-day drainage divides and the stability of reconstructed paleo-drainage systems. Our results indicate a progressive stability of the network towards the present-day situation.
Philippe Steer, Thomas Croissant, Edwin Baynes, and Dimitri Lague
Earth Surf. Dynam., 7, 681–706, https://doi.org/10.5194/esurf-7-681-2019, https://doi.org/10.5194/esurf-7-681-2019, 2019
Short summary
Short summary
We use a statistical earthquake generator to investigate the influence of fault activity on river profile development and on the formation of co-seismic knickpoints. We find that the magnitude distribution of knickpoints resulting from a purely seismic fault is homogeneous. Shallow aseismic slip favours knickpoints generated by large-magnitude earthquakes nucleating at depth. Accounting for fault burial by alluvial cover can modulate the topographic expression of earthquakes and fault activity.
Guillaume Cordonnier, Benoît Bovy, and Jean Braun
Earth Surf. Dynam., 7, 549–562, https://doi.org/10.5194/esurf-7-549-2019, https://doi.org/10.5194/esurf-7-549-2019, 2019
Short summary
Short summary
We propose a new algorithm to solve the problem of flow routing across local depressions in the topography, one of the main computational bottlenecks in landscape evolution models. Our solution is more efficient than the state-of-the-art algorithms, with an optimal linear asymptotic complexity. The algorithm has been designed specifically to be used within landscape evolution models, and also suits more generally the efficient treatment of large digital elevation models.
Meng Zhao, Gerard Salter, Vaughan R. Voller, and Shuwang Li
Earth Surf. Dynam., 7, 505–513, https://doi.org/10.5194/esurf-7-505-2019, https://doi.org/10.5194/esurf-7-505-2019, 2019
Short summary
Short summary
Typically, we think of a shoreline growing with a smooth line separating the land and the water. If the growth is unstable, however, the land–water front will exhibit a roughness that grows with time. Here we ask whether the growth of deltaic shorelines cab be unstable. Through mathematical analysis we show that growth is unstable when the shoreline is building onto an adverse slope. The length scale of the unstable signal in such a case, however, might be obscured by other geomorphic processes.
Kristyna Falatkova, Miroslav Šobr, Anton Neureiter, Wolfgang Schöner, Bohumír Janský, Hermann Häusler, Zbyněk Engel, and Vojtěch Beneš
Earth Surf. Dynam., 7, 301–320, https://doi.org/10.5194/esurf-7-301-2019, https://doi.org/10.5194/esurf-7-301-2019, 2019
Short summary
Short summary
In the last 50 years the Adygine glacier has been subject to relatively fast recession comparable to other glaciers in Tien Shan. As a consequence, a three-level cascade of glacial lakes formed, two of which were categorised as having medium outburst susceptibility. By 2050, the glacier is expected to have shrunk to 56–73 % of its 2012 extent. Further development of the site will result in formation of new lakes and probably also increase of outburst susceptibility due to permafrost degradation.
Cited articles
Berlin, M. M. and Anderson, R. S.:
Modeling of knickpoint retreat on the Roan Plateau, western Colorado,
J. Geophys. Res.,
112, F03S06, https://doi.org/10.1029/2006JF000553, 2007.
Clubb, F. J., Mudd, S. M., Attal, M., Milodowski, D. T., and Grieve, S. W. D.:
The relationship between drainage density, erosion rate, and hilltop curvature: Implications for sediment transport processes,
J. Geophys. Res.-Earth,
121, 1724–1745, https://doi.org/10.1002/2015JF003747, 2016.
Deal, E., Braun, J., and Botter, G.:
Understanding the role of rainfall and hydrology in determining fluvial erosion efficiency,
J. Geophys. Res.-Earth,
123, 744–778, https://doi.org/10.1002/2017JF004393, 2018.
DiBiase, R. A. and Whipple, K. X.:
The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate,
J. Geophys. Res.,
116, F04036, https://doi.org/10.1029/2011JF002095, 2011.
Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M., and Roering, J. J.:
Geomorphic Transport Laws for Predicting Landscape form and Dynamics,
in: Prediction in Geomorphology, Geophysical Monograph Series, 135,
edited by: Wilcock, P. R. and Iverson, R. M.,
American Geophysical Union, Washington, DC, USA, 103–132, https://doi.org/10.1029/135GM09, 2003.
Howard, A. D.:
A detachment-limited model of drainage basin evolution,
Water Resour. Res.,
30, 2261–2285, 1994.
Lague, D.:
The stream power river incision model: evidence, theory and beyond,
Earth Surf. Proc. Land.,
39, 38–61, 2014.
Lague, D., Hovius, N., and Davy, P.:
Discharge, discharge variability, and the bedrock channel profile,
J. Geophys. Res.,
110, F04006, https://doi.org/10.1029/2004JF000259, 2005.
Montgomery, D. R. and Dietrich, W. E.:
Channel Initiation and the Problem of Landscape Scale,
Science,
255, 826–830, 1992.
Montgomery, D. R. and Dietrich, W. E.:
Landscape Dissection and Drainage Area-Slope Thresholds,
in: Process Models and Theoretical Geomorphology, British Geomorphological Research Group Symposia Series (Book 8),
edited by: Kirkby, M. J., Wiley, New York, 221–246, 1994.
Montgomery, D. R. and Foufoula-Georgiou, E.:
Channel network source representation using digital elevation models,
Water Resour. Res.,
29, 3925–3934, 1993.
Perron, J. T., Dietrich, W. E., and Kirchner, J. W.:
Controls on the spacing of first-order valleys,
J. Geophys. Res.,
113, F04016, https://doi.org/10.1029/2007JF000977, 2008.
Perron, J. T., Kirchner, J. W., and Dietrich, W. E.:
Formation of evenly spaced ridges and valleys,
Nature,
460, 502–505, https://doi.org/10.1038/nature08174, 2009.
Perron, J. T., Richardson, P. W., Ferrier, K. L., and Lapôtre, M.:
The root of branching river networks,
Nature,
492, 100–103, https://doi.org/10.1038/nature11672, 2012.
Roering, J. J., Perron, J. T., and Kirchner, J. W.:
Functional relationships between denudation and hillslope form and relief,
Earth Planet. Sc. Lett.,
264, 245–258, https://doi.org/10.1016/j.epsl.2007.09.035, 2007.
Scherler, D., DiBiase, R. A., Fisher, G. B., and Avouac, J.-P.:
Testing monsoonal controls on bedrock river incision in the Himalaya and Eastern Tibet with a stochastic-threshold stream power model,
J. Geophys. Res.-Earth,
122, 1389–1429, https://doi.org/10.1002/2016JF004011, 2017.
Smith, T. R. and Bretherton, F. P.:
Stability and the conservation of mass in drainage basin evolution,
Water Resour. Res.,
8, 1506–1529, 1972.
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J.:
Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem,
J. Geophys. Res.,
108, 2117, https://doi.org/10.1029/2001JB001655, 2003.
Theodoratos, N. and Kirchner, J. W.: Dimensional analysis of a landscape evolution model with incision threshold, Earth Surf. Dynam., 8, 505–526, https://doi.org/10.5194/esurf-8-505-2020, 2020.
Theodoratos, N., Seybold, H., and Kirchner, J. W.: Scaling and similarity of a stream-power incision and linear diffusion landscape evolution model, Earth Surf. Dynam., 6, 779–808, https://doi.org/10.5194/esurf-6-779-2018, 2018.
Tucker, G. E.:
Drainage basin sensitivity to tectonic and climatic forcing: Implications of a stochastic model for the role of entrainment and erosion thresholds,
Earth Surf. Proc. Land.,
29, 185–205, https://doi.org/10.1002/esp.1020, 2004.
Tucker, G. E., Lancaster, S., Gasparini, N., and Bras, R.:
The channel-hillslope integrated landscape development model (CHILD),
in: Landscape erosion and evolution modeling,
edited by: Harmon, R. S. and Doe III, W. W.,
Kluwer Academic/Plenum Publishers, New York, USA, 349–388, 2001.
Whipple, K. X.:
Fluvial landscape response time: How plausible is steady-state denudation?,
Am. J. Sci.,
301, 313–325, 2001.
Whipple, K. X.:
Bedrock rivers and the geomorphology of active orogens,
Annu. Rev. Earth Pl. Sc.,
32, 151–185, 2004.
Whipple, K. X. and Tucker, G. E.:
Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research
needs,
J. Geophys. Res.-Solid,
104, 17661–17674, https://doi.org/10.1029/1999JB900120, 1999.
Short summary
We examine stream-power incision and linear diffusion landscape evolution models with and without incision thresholds. We present a steady-state relationship between curvature and the steepness index, which plots as a straight line. We view this line as a counterpart to the slope–area relationship for the case of landscapes with hillslope diffusion. We show that simple shifts and rotations of this line graphically express the topographic response of landscapes to changes in model parameters.
We examine stream-power incision and linear diffusion landscape evolution models with and...