Articles | Volume 11, issue 2
https://doi.org/10.5194/esurf-11-325-2023
https://doi.org/10.5194/esurf-11-325-2023
Research article
 | 
28 Apr 2023
Research article |  | 28 Apr 2023

A control volume finite-element model for predicting the morphology of cohesive-frictional debris flow deposits

Tzu-Yin Kasha Chen, Ying-Chen Wu, Chi-Yao Hung, Hervé Capart, and Vaughan R. Voller

Related authors

Unravelling Landslide Failure Mechanisms with Seismic Signal Analysis for Enhanced Pre-Survey Understanding
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
EGUsphere, https://doi.org/10.5194/egusphere-2024-1267,https://doi.org/10.5194/egusphere-2024-1267, 2024
Short summary
Evolution of submarine canyons and hanging-wall fans: insights from geomorphic experiments and morphodynamic models
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024,https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
How does the downstream boundary affect avulsion dynamics in a laboratory bifurcation?
Gerard Salter, Vaughan R. Voller, and Chris Paola
Earth Surf. Dynam., 7, 911–927, https://doi.org/10.5194/esurf-7-911-2019,https://doi.org/10.5194/esurf-7-911-2019, 2019
Short summary
Can the growth of deltaic shorelines be unstable?
Meng Zhao, Gerard Salter, Vaughan R. Voller, and Shuwang Li
Earth Surf. Dynam., 7, 505–513, https://doi.org/10.5194/esurf-7-505-2019,https://doi.org/10.5194/esurf-7-505-2019, 2019
Short summary
Self-similar growth of a bimodal laboratory fan
Pauline Delorme, Vaughan Voller, Chris Paola, Olivier Devauchelle, Éric Lajeunesse, Laurie Barrier, and François Métivier
Earth Surf. Dynam., 5, 239–252, https://doi.org/10.5194/esurf-5-239-2017,https://doi.org/10.5194/esurf-5-239-2017, 2017
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024,https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short Communication: Numerically simulated time to steady state is not a reliable measure of landscape response time
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024,https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
Drainage rearrangement in an intra-continental mountain belt: a case study from the central South Tian Shan, Kyrgyzstan
Lingxiao Gong, Peter van der Beek, Taylor F. Schildgen, Edward R. Sobel, Simone Racano, Apolline Mariotti, and Fergus McNab
Earth Surf. Dynam., 12, 973–994, https://doi.org/10.5194/esurf-12-973-2024,https://doi.org/10.5194/esurf-12-973-2024, 2024
Short summary
Channel concavity controls plan-form complexity of branching drainage networks
Liran Goren and Eitan Shelef
EGUsphere, https://doi.org/10.5194/egusphere-2024-808,https://doi.org/10.5194/egusphere-2024-808, 2024
Short summary

Cited articles

Armanini, A., Capart, H., Fraccarollo, L., and Larcher, M.: Rheological stratification in experimental free-surface flows of granular–liquid mixtures, J. Fluid Mech., 532, 269–319, https://doi.org/10.1017/S0022112005004283, 2005. a
Armanini, A., Fraccarollo, L., and Rosatti, G.: Two-dimensional simulation of debris flows in erodible channels, Comput. Geosci., 35, 993–1006, https://doi.org/10.1016/j.cageo.2007.11.008, 2009. a
Baliga, B. R. and Patankar, S. V.: A new finite-element formulation for convection-diffusion problems, Numer. Heat Transfer, 3, 393–409, https://doi.org/10.1080/01495728008961767, 1980. a
Baliga, B. R. and Patankar, S. V.: A control volume finite-element method for two-dimensional fluid flow and heat transfer, Numer. Heat Transfer, 6, 245–261, https://doi.org/10.1080/01495728308963086, 1983. a
Bartelt, P., Bieler, C., Bühler, Y., Christen, M., Deubelbeiss, Y., Graf, C., McArdell, B., Salz, M., and Schneider, M.: RAMMS – rapid mass movement simulation, A numerical model for debris flows in research and practice, User Manual v1.7.0, Debris Flow, WSL Institute for Snow and Avalanche Research SLF, http://ramms.slf.ch/ramms/downloads/RAMMS_DBF_Manual.pdf (last access: 19 October 2022), 2017. a
Download
Short summary
Predicting the extent and thickness of debris flow deposits is important for assessing and mitigating hazards. We propose a simplified mass balance model for predicting the morphology of terminated debris flows depositing over complex topography. A key element in this model is that the termination of flow of the deposit is determined by prescribed values of yield stress and friction angle. The model results are consistent with available analytical solutions and field and laboratory observations.