Articles | Volume 5, issue 3
https://doi.org/10.5194/esurf-5-429-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esurf-5-429-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
10Be systematics in the Tsangpo-Brahmaputra catchment: the cosmogenic nuclide legacy of the eastern Himalayan syntaxis
Maarten Lupker
CORRESPONDING AUTHOR
Geological Institute, D-ERDW, ETH Zürich, Zürich, 8092,
Switzerland
Institute of Geochemistry and Petrology, D-ERDW, ETH Zürich,
Zürich, 8092, Switzerland
Jérôme Lavé
CRPG, UMR 7358 CNRS–Univ. de Lorraine, Vandoeuvre les Nancy, 54500,
France
Christian France-Lanord
CRPG, UMR 7358 CNRS–Univ. de Lorraine, Vandoeuvre les Nancy, 54500,
France
Marcus Christl
Institute of Particle Physics, D-PHYS, ETH Zürich, Zürich,
8093, Switzerland
Didier Bourlès
CEREGE, UMR 34 UAM-CNRS-IRD, Aix-en-Provence, 13545, France
Julien Carcaillet
ISTerre, Univ. Grenoble Alpes–CNRS, Grenoble, 38000, France
Colin Maden
Institute of Geochemistry and Petrology, D-ERDW, ETH Zürich,
Zürich, 8092, Switzerland
Rainer Wieler
Institute of Geochemistry and Petrology, D-ERDW, ETH Zürich,
Zürich, 8092, Switzerland
Mustafizur Rahman
Department of Soil, Water and Environment, Dhaka University, Dhaka,
1000, Bangladesh
Devojit Bezbaruah
Department of Applied Geology, Dibrugarh University, Dibrugarh,
786004, India
Liu Xiaohan
Institute of Tibetan Plateau Research, Chinese Academy of Sciences,
Beijing, China
Related authors
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Marius L. Huber, Maarten Lupker, Sean F. Gallen, Marcus Christl, and Ananta P. Gajurel
Earth Surf. Dynam., 8, 769–787, https://doi.org/10.5194/esurf-8-769-2020, https://doi.org/10.5194/esurf-8-769-2020, 2020
Short summary
Short summary
Large boulders found in two Himalayan valleys show signs of long fluvial transport (>10 km). Paleo-discharges required to mobilize these boulders exceed typical monsoon discharges. Exposure dating shows that a cluster of these boulders was emplaced ca. 5 kyr ago. This period is coeval with a weakening of the Indian monsoon and glacier retreat in the area. We, therefore, suggest that glacier lake outburst floods are likely mechanisms that can explain these exceptional transport processes.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Maarten Lupker, Christian France-Lanord, and Bruno Lartiges
Earth Surf. Dynam., 4, 675–684, https://doi.org/10.5194/esurf-4-675-2016, https://doi.org/10.5194/esurf-4-675-2016, 2016
Short summary
Short summary
Rivers export the products of continental weathering to the oceans. It is important to accurately constrain these fluxes to better understand global biogeochemical cycles. The riverine export of major cation species in particular contributes to regulate the long-term carbon cycle. In this work we quantify some additional fluxes to the ocean that may occur when solid sediments react with seawater in estuaries. These fluxes have been only poorly constrained so far.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2553, https://doi.org/10.5194/egusphere-2024-2553, 2024
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains, within south Africa they are regarded as ancient landforms and can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Emanuele Scaramuzzo, Franz A. Livio, Maria Giuditta Fellin, and Colin Maden
EGUsphere, https://doi.org/10.5194/egusphere-2024-1135, https://doi.org/10.5194/egusphere-2024-1135, 2024
Short summary
Short summary
The theory of plate tectonics postulates that the opening and closure of an ocean are tied together into a cycle, namely the Wilson cycle. The rocks exposed in the western Southern Alps preserve the geologic record of two Wilson cycles: an earlier one, which led to the formation of the Variscan orogen, and the recent one, which led to the formation of the European Alps. We delved into this transition, and we found that it did not occur smoothly but through several abrupt changes.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Catharina Dieleman, Philip Deline, Susan Ivy Ochs, Patricia Hug, Jordan Aaron, Marcus Christl, and Naki Akçar
EGUsphere, https://doi.org/10.5194/egusphere-2023-1873, https://doi.org/10.5194/egusphere-2023-1873, 2023
Short summary
Short summary
Valleys in the Alps are shaped by glaciers, rivers, mass movements, and slope processes. An understanding of such processes is of great importance in hazard mitigation. We focused on the evolution of the Frébouge cone, which is composed of glacial, debris flow, rock avalanche, and snow avalanche deposits. Debris flows started to form the cone prior to ca. 2 ka ago. In addition, the cone was overrun by a 10 Mm3 large rock avalanche at 1.3 ± 0.1 ka and by the Frébouge glacier at 300 ± 40 a.
Giulia Sinnl, Florian Adolphi, Marcus Christl, Kees C. Welten, Thomas Woodruff, Marc Caffee, Anders Svensson, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 19, 1153–1175, https://doi.org/10.5194/cp-19-1153-2023, https://doi.org/10.5194/cp-19-1153-2023, 2023
Short summary
Short summary
The record of past climate is preserved by several archives from different regions, such as ice cores from Greenland or Antarctica or speleothems from caves such as the Hulu Cave in China. In this study, these archives are aligned by taking advantage of the globally synchronous production of cosmogenic radionuclides. This produces a new perspective on the global climate in the period between 20 000 and 25 000 years ago.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Peter D. Clift, Christian Betzler, Steven C. Clemens, Beth Christensen, Gregor P. Eberli, Christian France-Lanord, Stephen Gallagher, Ann Holbourn, Wolfgang Kuhnt, Richard W. Murray, Yair Rosenthal, Ryuji Tada, and Shiming Wan
Sci. Dril., 31, 1–29, https://doi.org/10.5194/sd-31-1-2022, https://doi.org/10.5194/sd-31-1-2022, 2022
Short summary
Short summary
An integrated campaign of drilling around Asia and Australia was conducted from 2013 to 2016 to reconstruct the monsoon climate. The results provide relatively continuous records spanning the last 24 myr. Asia has shown a steady drying since the late Miocene, while Australia has become wetter. The monsoons are affected by the tectonics of Asia and surrounding seas, as well as orbital forcing, resulting in diachronous evolution of continental climate, ocean currents, and the marine biosphere.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022, https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Marius L. Huber, Maarten Lupker, Sean F. Gallen, Marcus Christl, and Ananta P. Gajurel
Earth Surf. Dynam., 8, 769–787, https://doi.org/10.5194/esurf-8-769-2020, https://doi.org/10.5194/esurf-8-769-2020, 2020
Short summary
Short summary
Large boulders found in two Himalayan valleys show signs of long fluvial transport (>10 km). Paleo-discharges required to mobilize these boulders exceed typical monsoon discharges. Exposure dating shows that a cluster of these boulders was emplaced ca. 5 kyr ago. This period is coeval with a weakening of the Indian monsoon and glacier retreat in the area. We, therefore, suggest that glacier lake outburst floods are likely mechanisms that can explain these exceptional transport processes.
David Mair, Alessandro Lechmann, Romain Delunel, Serdar Yeşilyurt, Dmitry Tikhomirov, Christof Vockenhuber, Marcus Christl, Naki Akçar, and Fritz Schlunegger
Earth Surf. Dynam., 8, 637–659, https://doi.org/10.5194/esurf-8-637-2020, https://doi.org/10.5194/esurf-8-637-2020, 2020
Vincent Godard, Jean-Claude Hippolyte, Edward Cushing, Nicolas Espurt, Jules Fleury, Olivier Bellier, Vincent Ollivier, and the ASTER Team
Earth Surf. Dynam., 8, 221–243, https://doi.org/10.5194/esurf-8-221-2020, https://doi.org/10.5194/esurf-8-221-2020, 2020
Short summary
Short summary
Slow-slipping faults are often difficult to identify in landscapes. Here we analyzed high-resolution topographic data from the Valensole area at the front of the southwestern French Alps. We measured various properties of hillslopes such as their relief and the shape of hilltops. We observed systematic spatial variations of hillslope morphology indicative of relative changes in erosion rates. These variations are potentially related to slow tectonic deformation across the studied area.
François Clapuyt, Veerle Vanacker, Marcus Christl, Kristof Van Oost, and Fritz Schlunegger
Solid Earth, 10, 1489–1503, https://doi.org/10.5194/se-10-1489-2019, https://doi.org/10.5194/se-10-1489-2019, 2019
Short summary
Short summary
Using state-of-the-art geomorphic techniques, we quantified a 2-order of magnitude discrepancy between annual, decadal, and millennial sediment fluxes of a landslide-affected mountainous river catchment in the Swiss Alps. Our results illustrate that the impact of a single sediment pulse is strongly attenuated at larger spatial and temporal scales by sediment transport. The accumulation of multiple sediment pulses has rather a measurable impact on the regional pattern of sediment fluxes.
Maxi Castrillejo, Núria Casacuberta, Marcus Christl, Christof Vockenhuber, Hans-Arno Synal, Maribel I. García-Ibáñez, Pascale Lherminier, Géraldine Sarthou, Jordi Garcia-Orellana, and Pere Masqué
Biogeosciences, 15, 5545–5564, https://doi.org/10.5194/bg-15-5545-2018, https://doi.org/10.5194/bg-15-5545-2018, 2018
Short summary
Short summary
The investigation of water mass transport pathways and timescales is important to understand the global ocean circulation. Following earlier studies, we use artificial radionuclides introduced to the oceans in the 1950s to investigate the water transport in the subpolar North Atlantic (SPNA). For the first time, we combine measurements of the long-lived iodine-129 and uranium-236 to confirm earlier findings/hypotheses and to better understand shallow and deep ventilation processes in the SPNA.
Max Boxleitner, Susan Ivy-Ochs, Dagmar Brandova, Marcus Christl, Markus Egli, and Max Maisch
Geogr. Helv., 73, 241–252, https://doi.org/10.5194/gh-73-241-2018, https://doi.org/10.5194/gh-73-241-2018, 2018
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Catharina Dieleman, Susan Ivy-Ochs, Kristina Hippe, Olivia Kronig, Florian Kober, and Marcus Christl
E&G Quaternary Sci. J., 67, 17–23, https://doi.org/10.5194/egqsj-67-17-2018, https://doi.org/10.5194/egqsj-67-17-2018, 2018
Antoine Cogez, Frédéric Herman, Éric Pelt, Thierry Reuschlé, Gilles Morvan, Christopher M. Darvill, Kevin P. Norton, Marcus Christl, Lena Märki, and François Chabaux
Earth Surf. Dynam., 6, 121–140, https://doi.org/10.5194/esurf-6-121-2018, https://doi.org/10.5194/esurf-6-121-2018, 2018
Short summary
Short summary
Sediments produced by glaciers are transported by rivers and wind toward the ocean. During their journey, these sediments are weathered, and we know that this has an impact on climate. One key factor is time, but the duration of this journey is largely unknown. We were able to measure the average time that sediment spends only in the glacial area. This time is 100–200 kyr, which is long and allows a lot of processes to act on sediments during their journey.
Lorenz Wüthrich, Claudio Brändli, Régis Braucher, Heinz Veit, Negar Haghipour, Carla Terrizzano, Marcus Christl, Christian Gnägi, and Roland Zech
E&G Quaternary Sci. J., 66, 57–68, https://doi.org/10.5194/egqsj-66-57-2017, https://doi.org/10.5194/egqsj-66-57-2017, 2017
Eric Laloy, Koen Beerten, Veerle Vanacker, Marcus Christl, Bart Rogiers, and Laurent Wouters
Earth Surf. Dynam., 5, 331–345, https://doi.org/10.5194/esurf-5-331-2017, https://doi.org/10.5194/esurf-5-331-2017, 2017
Short summary
Short summary
Over very long timescales, 100 000 years or more, landscapes may drastically change. Sediments preserved in these landscapes have a cosmogenic radionuclide inventory that tell us when and how fast such changes took place. In this paper, we provide first evidence of an elevated long-term erosion rate of the northwestern Campine Plateau (lowland Europe), which can be explained by the loose nature of the subsoil.
Jean L. Dixon, Friedhelm von Blanckenburg, Kurt Stüwe, and Marcus Christl
Earth Surf. Dynam., 4, 895–909, https://doi.org/10.5194/esurf-4-895-2016, https://doi.org/10.5194/esurf-4-895-2016, 2016
Short summary
Short summary
We quantify the glacial legacy of Holocene erosion at the eastern edge of the European Alps and add insight to the debate on drivers of Alpine erosion. We present the first data explicitly comparing 10Be-based erosion rates in previously glaciated and non-glaciated basins (n = 26). Erosion rates vary 5-fold across the region, correlating with local topography and glacial history. Our approach and unique study site allow us to isolate the role of glacial topographic legacies from other controls.
Maarten Lupker, Christian France-Lanord, and Bruno Lartiges
Earth Surf. Dynam., 4, 675–684, https://doi.org/10.5194/esurf-4-675-2016, https://doi.org/10.5194/esurf-4-675-2016, 2016
Short summary
Short summary
Rivers export the products of continental weathering to the oceans. It is important to accurately constrain these fluxes to better understand global biogeochemical cycles. The riverine export of major cation species in particular contributes to regulate the long-term carbon cycle. In this work we quantify some additional fluxes to the ocean that may occur when solid sediments react with seawater in estuaries. These fluxes have been only poorly constrained so far.
C. Elsässer, D. Wagenbach, I. Levin, A. Stanzick, M. Christl, A. Wallner, S. Kipfstuhl, I. K. Seierstad, H. Wershofen, and J. Dibb
Clim. Past, 11, 115–133, https://doi.org/10.5194/cp-11-115-2015, https://doi.org/10.5194/cp-11-115-2015, 2015
N. Vogel, Y. Scheidegger, M. S. Brennwald, D. Fleitmann, S. Figura, R. Wieler, and R. Kipfer
Clim. Past, 9, 1–12, https://doi.org/10.5194/cp-9-1-2013, https://doi.org/10.5194/cp-9-1-2013, 2013
Related subject area
Physical: Landscape Evolution: modelling and field studies
Channel concavity controls planform complexity of branching drainage networks
Knickpoints and fixed points: the evolution of fluvial morphology under the combined effect of fault uplift and dam obstruction on a soft bedrock river
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Short Communication: Numerically simulated time to steady state is not a reliable measure of landscape response time
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Drainage rearrangement in an intra-continental mountain belt: a case study from the central South Tian Shan, Kyrgyzstan
Flexural isostatic response of continental-scale deltas to climatically driven sea level changes
Scaling between volume and runout of rock avalanches explained by a modified Voellmy rheology
Past anthropogenic land use change caused a regime shift of the fluvial response to Holocene climate change in the Chinese Loess Plateau
Steady-state forms of channel profiles shaped by debris flow and fluvial processes
Refining patterns of melt with forward stratigraphic models of stable Pleistocene coastlines
Optimising global landscape evolution models with 10Be
Self-organization of channels and hillslopes in models of fluvial landform evolution and its potential for solving scaling issues
Stream laws in analog tectonic-landscape models
A control volume finite-element model for predicting the morphology of cohesive-frictional debris flow deposits
Erosion and weathering in carbonate regions reveal climatic and tectonic drivers of carbonate landscape evolution
Patterns and rates of soil movement and shallow failures across several small watersheds on the Seward Peninsula, Alaska
River incision, 10Be production and transport in a source-to-sink sediment system (Var catchment, SW Alps)
Simulating the effect of subsurface drainage on the thermal regime and ground ice in blocky terrain in Norway
An experimental study of drainage network development by surface and subsurface flow in low-gradient landscapes
The push and pull of abandoned channels: how floodplain processes and healing affect avulsion dynamics and alluvial landscape evolution in foreland basins
Climate changes and the formation of fluvial terraces in central Amazonia inferred from landscape evolution modeling
Investigation of stochastic-threshold incision models across a climatic and morphological gradient
Comparing the transport-limited and ξ–q models for sediment transport
Autogenic knickpoints in laboratory landscape experiments
Transmissivity and groundwater flow exert a strong influence on drainage density
Graphically interpreting how incision thresholds influence topographic and scaling properties of modeled landscapes
Escarpment retreat rates derived from detrital cosmogenic nuclide concentrations
Hilltop curvature as a proxy for erosion rate: wavelets enable rapid computation and reveal systematic underestimation
Short communication: Analytical models for 2D landscape evolution
Effect of rock uplift and Milankovitch timescale variations in precipitation and vegetation cover on catchment erosion rates
Modeling glacial and fluvial landform evolution at large scales using a stream-power approach
Topographic disequilibrium, landscape dynamics and active tectonics: an example from the Bhutan Himalaya
Last-glacial-cycle glacier erosion potential in the Alps
The rate and extent of wind-gap migration regulated by tributary confluences and avulsions
Inferring potential landslide damming using slope stability, geomorphic constraints, and run-out analysis: a case study from the NW Himalaya
Groundwater erosion of coastal gullies along the Canterbury coast (New Zealand): a rapid and episodic process controlled by rainfall intensity and substrate variability
Erosional response of granular material in landscape models
Transport-limited fluvial erosion – simple formulation and efficient numerical treatment
Dimensional analysis of a landscape evolution model with incision threshold
Computing water flow through complex landscapes – Part 2: Finding hierarchies in depressions and morphological segmentations
Rivers as linear elements in landform evolution models
Interactions between main channels and tributary alluvial fans: channel adjustments and sediment-signal propagation
Drainage divide networks – Part 1: Identification and ordering in digital elevation models
Drainage divide networks – Part 2: Response to perturbations
Hillslope denudation and morphologic response to a rock uplift gradient
Geomorphic signatures of the transient fluvial response to tilting
The destiny of orogen-parallel streams in the Eastern Alps: the Salzach–Enns drainage system
Statistical modelling of co-seismic knickpoint formation and river response to fault slip
A versatile, linear complexity algorithm for flow routing in topographies with depressions
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024, https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary
Short summary
To explore the pattern formed by rivers as they crisscross the land, we developed a way to measure how these patterns vary, from straight to complex, winding paths. We discovered that a river's degree of complexity depends on how the river slope changes downstream. Although this is strange (i.e., why would changes in slope affect twists of a river in map view?), we show that this dependency is almost inevitable and that the complexity could signify how arid the climate is or used to be.
Hung-En Chen, Yen-Yu Chiu, Chih-Yuan Cheng, and Su-Chin Chen
Earth Surf. Dynam., 12, 1329–1346, https://doi.org/10.5194/esurf-12-1329-2024, https://doi.org/10.5194/esurf-12-1329-2024, 2024
Short summary
Short summary
This study explores the fluvial morphology evolution in three rivers in Taiwan caused by natural tectonic movements (the 1999 Mw 7.6 Chi-Chi earthquake) and human-made structures (dams). Knickpoints resulting from riverbed uplift shift, leading to gradual evolution from instability to equilibrium. Dams, on the other hand, cause continuous degradation of the bed. When both effects exist on a reach, the impact of the knickpoint gradually fades away, but the effects of the dam on the river persist.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024, https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations that describe surface water flow. Using quantitative data on rainfall and elevation, GraphFlood calculates river width and depth and approximates erosive power, making it a suitable tool for large-scale hazard management and understanding the relationship between rivers and mountains.
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024, https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Short summary
The time it takes for a landscape to adjust to new environmental conditions is critical for understanding the impacts of past and future environmental changes. We used different computational models and methods and found that predicted times for a landscape to reach a stable condition vary greatly. Our results illustrate that reporting how timescales are measured is important. Modelers should ensure that the measurement technique addresses the question.
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024, https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
Short summary
Toma hills are relatively isolated hills found in the deposits of rock avalanches, and their origin is still enigmatic. This paper presents the results of numerical simulations based on a modified version of a friction law that was originally introduced for snow avalanches. The model produces more or less isolated hills (which look much like toma hills) on the valley floor. The results provide, perhaps, the first explanation of the occurrence of toma hills based on a numerical model.
Lingxiao Gong, Peter van der Beek, Taylor F. Schildgen, Edward R. Sobel, Simone Racano, Apolline Mariotti, and Fergus McNab
Earth Surf. Dynam., 12, 973–994, https://doi.org/10.5194/esurf-12-973-2024, https://doi.org/10.5194/esurf-12-973-2024, 2024
Short summary
Short summary
We choose the large Saryjaz river from South Tian Shan to analyse topographic and fluvial metrics. By quantifying the spatial distribution of major metrics and comparing with modelling patterns, we suggest that the observed transience was triggered by a big capture event during the Plio-Pleistocene and potentially affected by both tectonic and climate factors. This conclusion underlines the importance of local contingent factors in driving drainage development.
Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, and Louis Moresi
Earth Surf. Dynam., 12, 301–320, https://doi.org/10.5194/esurf-12-301-2024, https://doi.org/10.5194/esurf-12-301-2024, 2024
Short summary
Short summary
Two-thirds of the world's most populated cities are situated close to deltas. We use computer simulations to understand how deltas sink or rise in response to climate-driven sea level changes that operate from thousands to millions of years. Our research shows that because of the interaction between the outer layers of the Earth, sediment transport, and sea level changes deltas develop a self-regulated mechanism that modifies the space they need to gain or lose land.
Stefan Hergarten
Earth Surf. Dynam., 12, 219–229, https://doi.org/10.5194/esurf-12-219-2024, https://doi.org/10.5194/esurf-12-219-2024, 2024
Short summary
Short summary
Large landslides turn into an avalanche-like mode of flow at high velocities, which allows for a much longer runout than predicted for a sliding solid body. In this study, the Voellmy rheology widely used in models for hazard assessment is reinterpreted and extended. The new approach predicts the increase in runout length with volume observed in nature quite well and may thus be a major step towards a more consistent modeling of rock avalanches and improved hazard assessment.
Hao Chen, Xianyan Wang, Yanyan Yu, Huayu Lu, and Ronald Van Balen
Earth Surf. Dynam., 12, 163–180, https://doi.org/10.5194/esurf-12-163-2024, https://doi.org/10.5194/esurf-12-163-2024, 2024
Short summary
Short summary
The Wei River catchment, one of the centers of the agricultural revolution in China, has experienced intense land use changes since 6000 BCE. This makes it an ideal place to study the response of river systems to anthropogenic land use change. Modeling results show the sensitivity of discharge and sediment yield to climate change increased abruptly when the agricultural land area exceeded a threshold at around 1000 BCE. This regime shift in the fluvial catchment led to a large sediment pulse.
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam., 11, 1117–1143, https://doi.org/10.5194/esurf-11-1117-2023, https://doi.org/10.5194/esurf-11-1117-2023, 2023
Short summary
Short summary
Debris flows are mixtures of mud and rocks that can travel at high speeds across steep landscapes. Here, we propose a new model to describe how landscapes are shaped by debris flow erosion over long timescales. Model results demonstrate that the shapes of channel profiles are sensitive to uplift rate, meaning that it may be possible to use topographic data from steep channel networks to infer how erosion rates vary across a landscape.
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023, https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Gregory A. Ruetenik, John D. Jansen, Pedro Val, and Lotta Ylä-Mella
Earth Surf. Dynam., 11, 865–880, https://doi.org/10.5194/esurf-11-865-2023, https://doi.org/10.5194/esurf-11-865-2023, 2023
Short summary
Short summary
We compare models of erosion against a global compilation of long-term erosion rates in order to find and interpret best-fit parameters using an iterative search. We find global signals among exponents which control the relationship between erosion rate and slope, as well as other parameters which are common in long-term erosion modelling. Finally, we analyse the global variability in parameters and find a correlation between precipitation and coefficients for optimised models.
Stefan Hergarten and Alexa Pietrek
Earth Surf. Dynam., 11, 741–755, https://doi.org/10.5194/esurf-11-741-2023, https://doi.org/10.5194/esurf-11-741-2023, 2023
Short summary
Short summary
The transition from hillslopes to channelized flow is typically attributed to a threshold catchment size in landform evolution models. Here we propose an alternative concept directly based on topography. Using this concept, channels and hillslopes self-organize, whereby the catchment size of the channel heads varies over some range. Our numerical results suggest that this concept works better than the established idea of a strict threshold catchment size.
Riccardo Reitano, Romano Clementucci, Ethan M. Conrad, Fabio Corbi, Riccardo Lanari, Claudio Faccenna, and Chiara Bazzucchi
Earth Surf. Dynam., 11, 731–740, https://doi.org/10.5194/esurf-11-731-2023, https://doi.org/10.5194/esurf-11-731-2023, 2023
Short summary
Short summary
Tectonics and surface processes work together in shaping orogens through their evolution. Laboratory models are used to overcome some limitations of direct observations since they allow for continuous and detailed analysis of analog orogens. We use a rectangular box filled with an analog material made of granular materials to study how erosional laws apply and how erosion affects the analog landscape as a function of the applied boundary conditions (regional slope and rainfall rate).
Tzu-Yin Kasha Chen, Ying-Chen Wu, Chi-Yao Hung, Hervé Capart, and Vaughan R. Voller
Earth Surf. Dynam., 11, 325–342, https://doi.org/10.5194/esurf-11-325-2023, https://doi.org/10.5194/esurf-11-325-2023, 2023
Short summary
Short summary
Predicting the extent and thickness of debris flow deposits is important for assessing and mitigating hazards. We propose a simplified mass balance model for predicting the morphology of terminated debris flows depositing over complex topography. A key element in this model is that the termination of flow of the deposit is determined by prescribed values of yield stress and friction angle. The model results are consistent with available analytical solutions and field and laboratory observations.
Richard Ott, Sean F. Gallen, and David Helman
Earth Surf. Dynam., 11, 247–257, https://doi.org/10.5194/esurf-11-247-2023, https://doi.org/10.5194/esurf-11-247-2023, 2023
Short summary
Short summary
We compile data on carbonate denudation, the sum of mechanical erosion and chemical weathering, from cosmogenic nuclides and use them in conjunction with weathering data to constrain the partitioning of denudation into erosion and weathering. We show how carbonate erosion and weathering respond to different climatic and tectonic conditions and find that variations in denudation partitioning can be used to explain the vastly different morphology of carbonate landscapes on Earth.
Joanmarie Del Vecchio, Emma R. Lathrop, Julian B. Dann, Christian G. Andresen, Adam D. Collins, Michael M. Fratkin, Simon Zwieback, Rachel C. Glade, and Joel C. Rowland
Earth Surf. Dynam., 11, 227–245, https://doi.org/10.5194/esurf-11-227-2023, https://doi.org/10.5194/esurf-11-227-2023, 2023
Short summary
Short summary
In cold regions of the Earth, thawing permafrost can change the landscape, impact ecosystems, and lead to the release of greenhouse gases. In this study we used many observational tools to better understand how sediment moves on permafrost hillslopes. Some topographic change conforms to our understanding of slope stability and sediment transport as developed in temperate landscapes, but much of what we observed needs further explanation by permafrost-specific geomorphic models.
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023, https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Short summary
We present new tools in the landscape evolution model Badlands to simulate 10Be production, erosion and transport. These tools are applied to a source-to-sink system in the SW French Alps, where the model is calibrated. We propose a model that fits river incision rates and 10Be concentrations in sediments, and we show that 10Be in deep marine sediments is a signal with multiple contributions that cannot be easily interpreted in terms of climate forcing.
Cas Renette, Kristoffer Aalstad, Juditha Aga, Robin Benjamin Zweigel, Bernd Etzelmüller, Karianne Staalesen Lilleøren, Ketil Isaksen, and Sebastian Westermann
Earth Surf. Dynam., 11, 33–50, https://doi.org/10.5194/esurf-11-33-2023, https://doi.org/10.5194/esurf-11-33-2023, 2023
Short summary
Short summary
One of the reasons for lower ground temperatures in coarse, blocky terrain is a low or varying soil moisture content, which most permafrost modelling studies did not take into account. We used the CryoGrid community model to successfully simulate this effect and found markedly lower temperatures in well-drained, blocky deposits compared to other set-ups. The inclusion of this drainage effect is another step towards a better model representation of blocky mountain terrain in permafrost regions.
Brian G. Sockness and Karen B. Gran
Earth Surf. Dynam., 10, 581–603, https://doi.org/10.5194/esurf-10-581-2022, https://doi.org/10.5194/esurf-10-581-2022, 2022
Short summary
Short summary
To study channel network development following continental glaciation, we ran small physical experiments where networks slowly expanded into flat surfaces. By changing substrate and rainfall, we altered flow pathways between surface and subsurface. Initially, most channels grew by overland flow. As relief increased, erosion through groundwater sapping occurred, especially in runs with high infiltration and low cohesion, highlighting the importance of groundwater in channel network evolution.
Harrison K. Martin and Douglas A. Edmonds
Earth Surf. Dynam., 10, 555–579, https://doi.org/10.5194/esurf-10-555-2022, https://doi.org/10.5194/esurf-10-555-2022, 2022
Short summary
Short summary
River avulsions (rivers suddenly changing course) redirect water and sediment. These floods can harm people and control how some landscapes evolve. We model how abandoned channels from older avulsions affect where, when, and why future avulsions occur in mountain-front areas. We show that abandoned channels can push and pull avulsions, and the way they heal controls landscapes. Avulsion models should include abandoned channels; we also highlight opportunities for future field workers.
Ariel Henrique do Prado, Renato Paes de Almeida, Cristiano Padalino Galeazzi, Victor Sacek, and Fritz Schlunegger
Earth Surf. Dynam., 10, 457–471, https://doi.org/10.5194/esurf-10-457-2022, https://doi.org/10.5194/esurf-10-457-2022, 2022
Short summary
Short summary
Our work is focused on describing how and why the terrace levels of central Amazonia were formed during the last 100 000 years. We propose to address this question through a landscape evolution numerical model. Our results show that terrace levels at lower elevation were established in response to dry–wet climate changes and the older terrace levels at higher elevations most likely formed in response to a previously higher elevation of the regional base level.
Clément Desormeaux, Vincent Godard, Dimitri Lague, Guillaume Duclaux, Jules Fleury, Lucilla Benedetti, Olivier Bellier, and the ASTER Team
Earth Surf. Dynam., 10, 473–492, https://doi.org/10.5194/esurf-10-473-2022, https://doi.org/10.5194/esurf-10-473-2022, 2022
Short summary
Short summary
Landscape evolution is highly dependent on climatic parameters, and the occurrence of intense precipitation events is considered to be an important driver of river incision. We compare the rate of erosion with the variability of river discharge in a mountainous landscape of SE France where high-magnitude floods regularly occur. Our study highlights the importance of the hypotheses made regarding the threshold that river discharge needs to exceed in order to effectively cut down into the bedrock.
Jean Braun
Earth Surf. Dynam., 10, 301–327, https://doi.org/10.5194/esurf-10-301-2022, https://doi.org/10.5194/esurf-10-301-2022, 2022
Short summary
Short summary
By comparing two models for the transport of sediment, we find that they share a similar steady-state solution that adequately predicts the shape of most depositional systems made of a fan and an alluvial plain. The length of the fan is controlled by the size of the mountain drainage area feeding the sedimentary system and its slope by the incoming sedimentary flux. We show that the models differ in their transient behavior to external forcing and are characterized by different response times.
Léopold de Lavaissière, Stéphane Bonnet, Anne Guyez, and Philippe Davy
Earth Surf. Dynam., 10, 229–246, https://doi.org/10.5194/esurf-10-229-2022, https://doi.org/10.5194/esurf-10-229-2022, 2022
Short summary
Short summary
Rivers are known to record changes in tectonic or climatic variation through long adjustment of their longitudinal profile slope. Here we describe such adjustments in experimental landscapes and show that they may result from the sole effect of intrinsic geomorphic processes. We propose a new model of river evolution that links long profile adjustment to cycles of river widening and narrowing. This result emphasizes the need to better understand control of lateral erosion on river width.
Elco Luijendijk
Earth Surf. Dynam., 10, 1–22, https://doi.org/10.5194/esurf-10-1-2022, https://doi.org/10.5194/esurf-10-1-2022, 2022
Short summary
Short summary
The distance between rivers is a noticeable feature of the Earth's surface. Previous work has indicated that subsurface groundwater flow may be important for drainage density. Here, I present a new model that combines subsurface and surface water flow and erosion, and demonstrates that groundwater exerts an important control on drainage density. Streams that incise rapidly can capture the groundwater discharge of adjacent streams, which may cause these streams to become dry and stop incising.
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 9, 1545–1561, https://doi.org/10.5194/esurf-9-1545-2021, https://doi.org/10.5194/esurf-9-1545-2021, 2021
Short summary
Short summary
We examine stream-power incision and linear diffusion landscape evolution models with and without incision thresholds. We present a steady-state relationship between curvature and the steepness index, which plots as a straight line. We view this line as a counterpart to the slope–area relationship for the case of landscapes with hillslope diffusion. We show that simple shifts and rotations of this line graphically express the topographic response of landscapes to changes in model parameters.
Yanyan Wang and Sean D. Willett
Earth Surf. Dynam., 9, 1301–1322, https://doi.org/10.5194/esurf-9-1301-2021, https://doi.org/10.5194/esurf-9-1301-2021, 2021
Short summary
Short summary
Although great escarpment mountain ranges are characterized by high relief, modern erosion rates suggest slow rates of landscape change. We question this interpretation by presenting a new method for interpreting concentrations of cosmogenic isotopes. Our analysis shows that erosion has localized onto an escarpment face, driving retreat of the escarpment at high rates. Our quantification of this retreat rate rationalizes the high-relief, dramatic landscape with the rates of geomorphic change.
William T. Struble and Joshua J. Roering
Earth Surf. Dynam., 9, 1279–1300, https://doi.org/10.5194/esurf-9-1279-2021, https://doi.org/10.5194/esurf-9-1279-2021, 2021
Short summary
Short summary
We used a mathematical technique known as a wavelet transform to calculate the curvature of hilltops in western Oregon, which we used to estimate erosion rate. We find that this technique operates over 1000 times faster than other techniques and produces accurate erosion rates. We additionally built artificial hillslopes to test the accuracy of curvature measurement methods. We find that at fast erosion rates, curvature is underestimated, raising questions of measurement accuracy elsewhere.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Hemanti Sharma, Todd A. Ehlers, Christoph Glotzbach, Manuel Schmid, and Katja Tielbörger
Earth Surf. Dynam., 9, 1045–1072, https://doi.org/10.5194/esurf-9-1045-2021, https://doi.org/10.5194/esurf-9-1045-2021, 2021
Short summary
Short summary
We study effects of variable climate–vegetation with different uplift rates on erosion–sedimentation using a landscape evolution modeling approach. Results suggest that regardless of uplift rates, transients in precipitation–vegetation lead to transients in erosion rates in the same direction of change. Vegetation-dependent erosion and sedimentation are influenced by Milankovitch timescale changes in climate, but these transients are superimposed upon tectonically driven uplift rates.
Stefan Hergarten
Earth Surf. Dynam., 9, 937–952, https://doi.org/10.5194/esurf-9-937-2021, https://doi.org/10.5194/esurf-9-937-2021, 2021
Short summary
Short summary
This paper presents a new approach to modeling glacial erosion on large scales. The formalism is similar to large-scale models of fluvial erosion, so glacial and fluvial processes can be easily combined. The model is simpler and numerically less demanding than established models based on a more detailed description of the ice flux. The numerical implementation almost achieves the efficiency of purely fluvial models, so that simulations over millions of years can be performed on standard PCs.
Martine Simoes, Timothée Sassolas-Serrayet, Rodolphe Cattin, Romain Le Roux-Mallouf, Matthieu Ferry, and Dowchu Drukpa
Earth Surf. Dynam., 9, 895–921, https://doi.org/10.5194/esurf-9-895-2021, https://doi.org/10.5194/esurf-9-895-2021, 2021
Short summary
Short summary
Elevated low-relief regions and major river knickpoints have for long been noticed and questioned in the emblematic Bhutan Himalaya. We document the morphology of this region using morphometric analyses and field observations, at a variety of spatial scales. Our findings reveal a highly unstable river network, with numerous non-coeval river captures, most probably related to a dynamic response to local tectonic uplift in the mountain hinterland.
Julien Seguinot and Ian Delaney
Earth Surf. Dynam., 9, 923–935, https://doi.org/10.5194/esurf-9-923-2021, https://doi.org/10.5194/esurf-9-923-2021, 2021
Short summary
Short summary
Ancient Alpine glaciers have carved a fascinating landscape of piedmont lakes, glacial valleys, and mountain cirques. Using a previous supercomputer simulation of glacier flow, we show that glacier erosion has constantly evolved and moved to different parts of the Alps. Interestingly, larger glaciers do not always cause more rapid erosion. Instead, glacier erosion is modelled to slow down during glacier advance and peak during phases of retreat, such as the one the Earth is currently undergoing.
Eitan Shelef and Liran Goren
Earth Surf. Dynam., 9, 687–700, https://doi.org/10.5194/esurf-9-687-2021, https://doi.org/10.5194/esurf-9-687-2021, 2021
Short summary
Short summary
Drainage basins are bounded by water divides (divides) that define their shape and extent. Divides commonly coincide with high ridges, but in places that experienced extensive tectonic deformation, divides sometimes cross elongated valleys. Inspired by field observations and using simulations of landscape evolution, we study how side channels that drain to elongated valleys induce pulses of divide migration, affecting the distribution of water and erosion products across mountain ranges.
Vipin Kumar, Imlirenla Jamir, Vikram Gupta, and Rajinder K. Bhasin
Earth Surf. Dynam., 9, 351–377, https://doi.org/10.5194/esurf-9-351-2021, https://doi.org/10.5194/esurf-9-351-2021, 2021
Short summary
Short summary
Despite a history of landslide damming and flash floods in the NW Himalaya, only a few studies have been performed. This study predicts some potential landslide damming sites in the Satluj valley, NW Himalaya, using field observations, laboratory analyses, geomorphic proxies, and numerical simulations. Five landslides, comprising a total landslide volume of 26.3 ± 6.7 M m3, are found to have the potential to block the river in the case of slope failure.
Aaron Micallef, Remus Marchis, Nader Saadatkhah, Potpreecha Pondthai, Mark E. Everett, Anca Avram, Alida Timar-Gabor, Denis Cohen, Rachel Preca Trapani, Bradley A. Weymer, and Phillipe Wernette
Earth Surf. Dynam., 9, 1–18, https://doi.org/10.5194/esurf-9-1-2021, https://doi.org/10.5194/esurf-9-1-2021, 2021
Short summary
Short summary
We study coastal gullies along the Canterbury coast of New Zealand using field observations, sample analyses, drones, satellites, geophysical instruments and modelling. We show that these coastal gullies form when rainfall intensity is higher than 40 mm per day. The coastal gullies are formed by landslides where buried channels or sand lenses are located. This information allows us to predict where coastal gullies may form in the future.
Riccardo Reitano, Claudio Faccenna, Francesca Funiciello, Fabio Corbi, and Sean D. Willett
Earth Surf. Dynam., 8, 973–993, https://doi.org/10.5194/esurf-8-973-2020, https://doi.org/10.5194/esurf-8-973-2020, 2020
Short summary
Short summary
Looking into processes that occur on different timescales that span over thousands or millions of years is difficult to achieve. This is the case when we try to understand the interaction between tectonics and surface processes. Analog modeling is an investigating technique that can overcome this limitation. We study the erosional response of an analog landscape by varying the concentration of components of analog materials that strongly affect the evolution of experimental landscapes.
Stefan Hergarten
Earth Surf. Dynam., 8, 841–854, https://doi.org/10.5194/esurf-8-841-2020, https://doi.org/10.5194/esurf-8-841-2020, 2020
Short summary
Short summary
Many contemporary models of large-scale fluvial erosion focus on the detachment-limited regime where all material entrained by the river is immediately excavated. This limitation facilitates the comparison with real river profiles and strongly reduces the numerical complexity. Here a simple formulation for the opposite case, transport-limited erosion, and a new numerical scheme that achieves almost the same numerical efficiency as detachment-limited models are presented.
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 8, 505–526, https://doi.org/10.5194/esurf-8-505-2020, https://doi.org/10.5194/esurf-8-505-2020, 2020
Short summary
Short summary
We non-dimensionalized a commonly used model of landscape evolution that includes an incision threshold. Whereas the original model included four parameters, we obtained a dimensionless form with a single parameter, which quantifies the relative importance of the incision threshold. Working with this form saves computational time and simplifies theoretical analyses.
Richard Barnes, Kerry L. Callaghan, and Andrew D. Wickert
Earth Surf. Dynam., 8, 431–445, https://doi.org/10.5194/esurf-8-431-2020, https://doi.org/10.5194/esurf-8-431-2020, 2020
Short summary
Short summary
Maps of elevation are used to help predict the flow of water so we can better understand landslides, floods, and global climate change. However, modeling the flow of water is difficult when elevation maps include swamps, lakes, and other depressions. This paper explains a new method that overcomes these difficulties, allowing models to run faster and more accurately.
Stefan Hergarten
Earth Surf. Dynam., 8, 367–377, https://doi.org/10.5194/esurf-8-367-2020, https://doi.org/10.5194/esurf-8-367-2020, 2020
Short summary
Short summary
Models of fluvial erosion have a long history in landform evolution modeling. Interactions between rivers and processes acting at hillslopes (e.g., landslides) are receiving growing interest in this context. While present-day computer capacities allow for applying such coupled models, there is still a scaling problem when considering rivers to be linear elements on a topography. Based on a reinterpretation of old empirical results, this study presents a new approach to overcome this problem.
Sara Savi, Stefanie Tofelde, Andrew D. Wickert, Aaron Bufe, Taylor F. Schildgen, and Manfred R. Strecker
Earth Surf. Dynam., 8, 303–322, https://doi.org/10.5194/esurf-8-303-2020, https://doi.org/10.5194/esurf-8-303-2020, 2020
Short summary
Short summary
Fluvial deposits record changes in water and sediment supply. As such, they are often used to reconstruct the tectonic or climatic history of a basin. In this study we used an experimental setting to analyze how fluvial deposits register changes in water or sediment supply at a confluence zone. We provide a new conceptual framework that may help understanding the construction of these deposits under different forcings conditions, information crucial to correctly inferring the history of a basin.
Dirk Scherler and Wolfgang Schwanghart
Earth Surf. Dynam., 8, 245–259, https://doi.org/10.5194/esurf-8-245-2020, https://doi.org/10.5194/esurf-8-245-2020, 2020
Short summary
Short summary
Drainage divides are believed to provide clues about divide migration and the instability of landscapes. Here, we present a novel approach to extract drainage divides from digital elevation models and to order them in a drainage divide network. We present our approach by studying natural and artificial landscapes generated with a landscape evolution model and disturbed to induce divide migration.
Dirk Scherler and Wolfgang Schwanghart
Earth Surf. Dynam., 8, 261–274, https://doi.org/10.5194/esurf-8-261-2020, https://doi.org/10.5194/esurf-8-261-2020, 2020
Short summary
Short summary
Drainage divides are believed to provide clues about divide migration and the instability of landscapes. Here, we present a novel approach to extract drainage divides from digital elevation models and to order them in a drainage divide network. We present our approach by studying natural and artificial landscapes generated with a landscape evolution model and disturbed to induce divide migration.
Vincent Godard, Jean-Claude Hippolyte, Edward Cushing, Nicolas Espurt, Jules Fleury, Olivier Bellier, Vincent Ollivier, and the ASTER Team
Earth Surf. Dynam., 8, 221–243, https://doi.org/10.5194/esurf-8-221-2020, https://doi.org/10.5194/esurf-8-221-2020, 2020
Short summary
Short summary
Slow-slipping faults are often difficult to identify in landscapes. Here we analyzed high-resolution topographic data from the Valensole area at the front of the southwestern French Alps. We measured various properties of hillslopes such as their relief and the shape of hilltops. We observed systematic spatial variations of hillslope morphology indicative of relative changes in erosion rates. These variations are potentially related to slow tectonic deformation across the studied area.
Helen W. Beeson and Scott W. McCoy
Earth Surf. Dynam., 8, 123–159, https://doi.org/10.5194/esurf-8-123-2020, https://doi.org/10.5194/esurf-8-123-2020, 2020
Short summary
Short summary
We used a computer model to show that, when a landscape is tilted, rivers respond in a distinct way such that river profiles take on unique forms that record tilt timing and magnitude. Using this suite of river forms, we estimated tilt timing and magnitude in the Sierra Nevada, USA, and results were consistent with independent measures. Our work broadens the scope of tectonic histories that can be extracted from landscape form to include tilting, which has been documented in diverse locations.
Georg Trost, Jörg Robl, Stefan Hergarten, and Franz Neubauer
Earth Surf. Dynam., 8, 69–85, https://doi.org/10.5194/esurf-8-69-2020, https://doi.org/10.5194/esurf-8-69-2020, 2020
Short summary
Short summary
The evolution of the drainage system in the Eastern Alps is inherently linked to different tectonic stages. This leads to a situation in which major orogen-parallel alpine rivers, such as the Salzach and the Enns, are characterized by elongated east–west-oriented catchments. We investigate the stability of present-day drainage divides and the stability of reconstructed paleo-drainage systems. Our results indicate a progressive stability of the network towards the present-day situation.
Philippe Steer, Thomas Croissant, Edwin Baynes, and Dimitri Lague
Earth Surf. Dynam., 7, 681–706, https://doi.org/10.5194/esurf-7-681-2019, https://doi.org/10.5194/esurf-7-681-2019, 2019
Short summary
Short summary
We use a statistical earthquake generator to investigate the influence of fault activity on river profile development and on the formation of co-seismic knickpoints. We find that the magnitude distribution of knickpoints resulting from a purely seismic fault is homogeneous. Shallow aseismic slip favours knickpoints generated by large-magnitude earthquakes nucleating at depth. Accounting for fault burial by alluvial cover can modulate the topographic expression of earthquakes and fault activity.
Guillaume Cordonnier, Benoît Bovy, and Jean Braun
Earth Surf. Dynam., 7, 549–562, https://doi.org/10.5194/esurf-7-549-2019, https://doi.org/10.5194/esurf-7-549-2019, 2019
Short summary
Short summary
We propose a new algorithm to solve the problem of flow routing across local depressions in the topography, one of the main computational bottlenecks in landscape evolution models. Our solution is more efficient than the state-of-the-art algorithms, with an optimal linear asymptotic complexity. The algorithm has been designed specifically to be used within landscape evolution models, and also suits more generally the efficient treatment of large digital elevation models.
Cited articles
Abrahami, R., van der Beek, P., Huyghe, P., Hardwick, E., and Carcaillet, J.: Decoupling of long-term exhumation and short-term erosion rates in the Sikkim Himalaya, Earth Planet. Sc. Lett., 433, 76–88, https://doi.org/10.1016/j.epsl.2015.10.039, 2016.
Acharyya, S. K.: Evolution of the Himalayan Paleogene foreland basin, influence of its litho-packet on the formation of thrust-related domes and windows in the Eastern Himalayas – A review, J. Asian Earth Sci., 31, 1–17, 2007.
Aguilar, G., Carretier, S., Regard, V., Vassallo, R., Riquelme, R., and Martinod, J.: Grain size-dependent 10Be concentrations in alluvial stream sediment of the Huasco Valley, a semi-arid Andes region, Quat. Geochronol., 19, 163–172, https://doi.org/10.1016/j.quageo.2013.01.011, 2014.
Anders, A. M., Roe, G. H., Hallet, B., Montgomery, D. R., Finnegan, N. J., and Putkonen, J.: Spatial patterns of precipitation and topography in the Himalaya, Tectonics, Climate, and Landscape Evolution, 398, 39–53, https://doi.org/10.1130/2006.2398(03), 2006.
Armijo, R., Tapponnier, P., Mercier, J. L., and Han, T. L.: Quaternary Extension in Southern Tibet – Field Observations and Tectonic Implications, J. Geophys. Res.-Solid, 91, 13803–13872, https://doi.org/10.1029/JB091iB14p13803, 1986.
Attal, M. and Lavé, J.: Changes of bedload characteristics along the Marsyandi River (central Nepal): Implications for understanding hillslope sediment supply, sediment load evolution along fuvial networks, and denudation in active orogenic belts, Tectonics, Climate, and Landscape Evolution, 143–171, 2006.
Attal, M. and Lavé, J.: Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers, J. Geophys. Res., 114, F04023, https://doi.org/10.1029/2009JF001328, 2009.
Belmont, P., Pazzaglia, F. J., and Gosse, J. C.: Cosmogenic Be-10 as a tracer for hillslope and channel sediment dynamics in the Clearwater River, western Washington State, Earth Planet. Sc. Lett., 264, 123–135, 2007.
Bendick, R. and Ehlers, T. A.: Extreme localized exhumation at syntaxes initiated by subduction geometry, Geophys. Res. Lett., 41, 5861–5867, https://doi.org/10.1002/2014gl061026, 2014.
Bierman, P. and Steig, E.: Estimating rates of denudation using cosmogenic isotope abundances in sediment, Earth Surf. Proc. Land., 21, 125–139, 1996.
Bookhagen, B. and Burbank, D. W.: Topography, relief, and TRMM-derived rainfall variations along the Himalaya, Geophys. Res. Lett., 33, L08405, https://doi.org/10.1029/2006GL026037, 2006.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426, 2010.
Bracciali, L., Parrish, R. R., Najman, Y., Smye, A., Carter, A., and Wijbrans, J. R.: Plio-Pleistocene exhumation of the eastern Himalayan syntaxis and its domal “pop-up”, Earth-Sci. Rev., 160, 350–385, https://doi.org/10.1016/j.earscirev.2016.07.010, 2016.
Braucher, R., Brown, E., Bourles, D., and Colin, F.: In situ produced Be-10 measurements at great depths: implications for production rates by fast muons, Earth Planet. Sc. Lett., 211, 251–258, https://doi.org/10.1016/S0012-821X(03)00205-X, 2003.
Braucher, R., Merchel, S., Borgomano, J., and Bourles, D. L.: Production of cosmogenic radionuclides at great depth: A multi element approach, Earth Planet. Sc. Lett., 309, 1–9, https://doi.org/10.1016/j.epsl.2011.06.036, 2011.
Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., and Yiou, F.: Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico, Earth Planet. Sc. Lett., 129, 193–202, https://doi.org/10.1016/0012-821X(94)00249-X, 1995.
Burg, J., Nievergelt, P., Oberli, F., Seward, D., Davy, P., Maurin, J., Diao, Z., and Meier, M.: The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding, J. Asian Earth Sci., 16, 239–252, 1998.
Burg, J. P., Davy, P., Nievergelt, P., Oberli, F., Seward, D., Diao, Z. Z., and Meier, M.: Exhumation during crustal folding in the Namche-Barwa syntaxis, Terra Nova, 9, 53–56, https://doi.org/10.1111/j.1365-3121.1997.tb00001.x, 1997.
Carretier, S. and Regard, V.: Is it possible to quantify pebble abrasion and velocity in rivers using terrestrial cosmogenic nuclides?, J. Geophys. Res.-Earth, 116, F04003, https://doi.org/10.1029/2011jf001968, 2011.
Carretier, S., Regard, V., Vassallo, R., Martinod, J., Christophoul, F., Gayer, E., Audin, L., and Lagane, C.: A note on 10Be-derived mean erosion rates in catchments with heterogeneous lithology: examples from the western Central Andes, Earth Surf. Proc. Land., 40, 1719–1729, https://doi.org/10.1002/esp.3748, 2015a.
Carretier, S., Regard, V., Vassallo, R., Aguilar, G., Martinod, J., Riquelme, R., Christophoul, F., Charrier, R., Gayer, E., Farias, M., Audin, L., and Lagane, C.: Differences in Be-10 concentrations between river sand, gravel and pebbles along the western side of the central Andes, Quat. Geochronol., 27, 33–51, 2015b.
Chirouze, F., Dupont-Nivet, G., Huyghe, P., van der Beek, P., Chakraborti, T., Bernet, M., and Erens, V.: Magnetostratigraphy of the Neogene Siwalik Group in the far eastern Himalaya: Kameng section, Arunachal Pradesh, India, J. Asian Earth Sci., 44, 117–135, https://doi.org/10.1016/j.jseaes.2011.05.016, 2012.
Chmeleff, J., Blanckenburg, F. v., Kossert, K., and Jakob, D.: Determination of the Be-10 half-life by multicollector ICP-MS and liquid scintillation counting, Nucl. Instrum. Meth. B, 268, 192–199, https://doi.org/10.1016/j.nimb.2009.09.012, 2010.
Christl, M., Vockenhuber, C., Kubik, P. W., Wacker, L., Lachner, J., Alfimov, V., and Synal, H. A.: The ETH Zurich AMS facilities: Performance parameters and reference materials, Nucl. Instrum. Meth. B, 294, 29–38, https://doi.org/10.1016/j.nimb.2012.03.004, 2013.
Clapp, E. M., Bierman, P. R., and Caffee, M.: Using Be-10 and Al-26 to determine sediment generation rates and identify sediment source areas in an arid region drainage basin, Geomorphology, 45, 89–104, https://doi.org/10.1016/S0169-555x(01)00191-X, 2002.
Corbett, L. B., Bierman, P. R., and Rood, D. H.: An approach for optimizing in situ cosmogenic Be-10 sample preparation, Quat. Geochronol., 33, 24–34, https://doi.org/10.1016/j.quageo.2016.02.001, 2016.
Delaney, K. B. and Evans, S. G.: The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: Review, remote sensing analysis, and process modelling, Geomorphology, 246, 377–393, https://doi.org/10.1016/j.geomorph.2015.06.020, 2015.
Delunel, R., van der Beek, P. A., Bourlès, D. L., Carcaillet, J., and Schlunegger, F.: Transient sediment supply in a high-altitude Alpine environment evidenced through a 10Be budget of the Etages catchment (French Western Alps), Earth Surf. Proc. Land., 39, 890–899, https://doi.org/10.1002/esp.3494, 2014.
Dubille, M. and Lavé, J.: Rapid grain size coarsening at sandstone/conglomerate transition: similar expression in Himalayan modern rivers and Pliocene molasse deposits, Basin Res., 27, 26–42, https://doi.org/10.1111/bre.12071, 2014.
Dunne, J., Elmore, D., and Muzikar, P.: Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces, Geomorphology, 27, 3–11, 1999.
Enkelmann, E., Ehlers, T. A., Zeitler, P. K., and Hallet, B.: Denudation of the Namche Barwa antiform, eastern Himalaya, Earth Planet. Sc. Lett., 307, 323–333, https://doi.org/10.1016/j.epsl.2011.05.004, 2011.
Finlayson, D., Montgomery, D., and Hallet, B.: Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas, Geology, 30, 219–222, https://doi.org/10.1130/0091-7613(2002)030<0219:SCORIE>2.0.CO;230, 2002.
Finnegan, N. J., Hallet, B., Montgomery, D. R., Zeitler, P. K., Stone, J. O., Anders, A. M., and Yuping, L.: Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet, Geol. Soc. Am. Bull., 120, 142–155, https://doi.org/10.1130/B26224.1, 2008.
Foster, M. A. and Anderson, R. S.: Assessing the effect of a major storm on (BE)-B-10 concentrations and inferred basin-averaged denudation rates, Quat. Geochronol., 34, 58–68, https://doi.org/10.1016/j.quageo.2016.03.006, 2016.
Frings, R. M.: Downstream fining in large sand-bed rivers, Earth-Sci. Rev., 87, 39–60, https://doi.org/10.1016/j.earscirev.2007.10.001, 2008.
Garzanti, E., Vezzoli, G., Andò, S., France-Lanord, C., Singh, S. K., and Foster, G.: Sand petrology and focused erosion in collision orogens: the Brahmaputra case, Earth Planet. Sc. Lett., 220, 157–174, https://doi.org/10.1016/S0012-821X(04)00035-4, 2004.
Godard, V., Burbank, D. W., Bourles, D. L., Bookhagen, B., Braucher, R., and Fisher, G. B.: Impact of glacial erosion on 10Be concentrations in fluvial sediments of the Marsyandi catchment, central Nepal, J. Geophys. Res., 117, F03013, https://doi.org/10.1029/2011JF002230, 2012.
Godard, V., Bourles, D. L., Spinabella, F., Burbank, D. W., Bookhagen, B., Fisher, G. B., Moulin, A., and Leanni, L.: Dominance of tectonics over climate in Himalayan denudation, Geology, 42, 243–246, https://doi.org/10.1130/G35342.1, 2014.
Goswami, D. C.: Brahmaputra River, Assam, India – Physiography, Basin Denudation, and Channel Aggradation, Water Resour. Res., 21, 959–978, https://doi.org/10.1029/WR021i007p00959, 1985.
Granger, D., Kirchner, J., and Finkel, R.: Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment, J. Geol., 104, 249–257, 1996.
Heisinger, B., Lal, D., Jull, A., Kubik, P., Ivy-Ochs, S., Knie, K., and Nolte, E.: Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons, Earth Planet. Sc. Lett., 200, 357–369, 2002a.
Heisinger, B., Lal, D., Jull, A., Kubik, P., Ivy-Ochs, S., Neumaier, S., Knie, K., Lazarev, V., and Nolte, E.: Production of selected cosmogenic radionuclides by muons: 1. Fast muons, Earth Planet. Sc. Lett., 200, 345–355, 2002b.
Hetzel, R., Dunkl, I., Haider, V., Strobl, M., von Eynatten, H., Ding, L., and Frei, D.: Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift, Geology, 39, 983–986, https://doi.org/10.1130/G32069.1, 2011.
Hydraulics, D.: Delft Hydraulics and Danish Hydraulics Institute, River Survey Project, Flood Action Plan 24, Water Resour. Plann. Org., Dhaka, 1996.
Jain, A. K. and Thakur, V. C.: Abor Volcanics of Arunachal Himalaya, J. Geol. Soc. India, 19, 335–349, 1978.
Jarvis, A., Reuter, A., Nelson, A., and Guevara, E.: Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database (http://srtm.csi.cgiar.org), 2008.
Jerolmack, D. J. and Brzinski, T. A.: Equivalence of abrupt grain-size transitions in alluvial rivers and eolian sand seas: A hypothesis, Geology, 38, 886–886, 2010.
King, G. E., Herman, F., and Guralnik, B.: Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry, Science, 353, 800–804, https://doi.org/10.1126/science.aaf2637, 2016.
Klein, M. G., Gottdang, A., Mous, D. J. W., Bourles, D. L., Arnold, M., Hamelin, B., Aumaitre, G., Braucher, R., Merchel, S., and Chauvet, F.: Performance of the HVE 5 MV AMS system at CEREGE using an absorber foil for isobar suppression, Nucl. Instrum. Meth. B, 266, 1828–1832, https://doi.org/10.1016/j.nimb.2007.11.077, 2008.
Kober, F., Hippe, K., Salcher, B., Ivy-Ochs, S., Kubik, P. W., Wacker, L., and Hahlen, N.: Debris-flow-dependent variation of cosmogenically derived catchment-wide denudation rates, Geology, 40, 935–938, https://doi.org/10.1130/G33406.1, 2012.
Kong, P., Na, C. G., Fink, D., Ding, L., and Huang, F. X.: Erosion in northwest Tibet from in-situ-produced cosmogenic Be-10 and Al-26 in bedrock, Earth Surf. Proc. Land., 32, 116–125, https://doi.org/10.1002/esp.1380, 2007.
Koons, P. O., Zeitler, P. K., and Hallet, B.: 5.14 Tectonic Aneurysms and Mountain Building A2, in: Treatise on Geomorphology, edited by: Shroder, J. F., Academic Press, San Diego, 2013.
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, C. L., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A.: A new value for the half-life of Be-10 by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting, Nucl. Instrum. Meth. B, 268, 187–191, https://doi.org/10.1016/j.nimb.2009.09.020, 2010.
Kuenen, P. H.: Realms of Water, Geogr. J., 122, 266–266, 1956.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, 1991.
Lal, D., Harris, N. B. W., Sharma, K. K., Gu, Z. Y., Ding, L., Liu, T. S., Dongal, W. Q., Caffee, M. W., and Jull, A. J. T.: Erosion history of the Tibetan Plateau since the last interglacial: constraints from the first studies of cosmogenic Be-10 from Tibetan bedrock, Earth Planet. Sc. Lett., 217, 33–42, https://doi.org/10.1016/S0012-821x(03)00600-9, 2004.
Lang, K. A., Huntington, K. W., and Montgomery, D. R.: Erosion of the Tsangpo Gorge by megafloods, Eastern Himalaya, Geology, 41, 1003–1006, https://doi.org/10.1130/G34693.1, 2013.
Lang, K. A., Huntington, K. W., Burmester, R., and Housen, B.: Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene, Geol. Soc. Am. Bull., 128, 1403–1422, https://doi.org/10.1130/B31419.1, 2016.
Larsen, I. J. and Montgomery, D. R.: Landslide erosion coupled to tectonics and river incision, Nat. Geosci., 5, 468–473, https://doi.org/10.1038/ngeo1479, 2012.
Le Roux-Mallouf, R., Godard, V., Cattin, R., Ferry, M., Gyeltshen, J., Ritz, J. F., Drupka, D., Guillou, V., Arnold, M., Aumaitre, G., Bourles, D. L., and Keddadouche, K.: Evidence for a wide and gently dipping Main Himalayan Thrust in western Bhutan, Geophys. Res. Lett., 42, 3257–3265, https://doi.org/10.1002/2015gl063767, 2015.
Li, Y. K., Li, D. W., Liu, G. N., Harbor, J., Caffee, M., and Stroeven, A. P.: Patterns of landscape evolution on the central and northern Tibetan Plateau investigated using in-situ produced Be-10 concentrations from river Sediments, Earth Planet. Sc. Lett., 398, 77–89, https://doi.org/10.1016/j.epsl.2014.04.045, 2014.
Liu, G. and Einsele, G.: Sedimentary History of the Tethyan Basin in the Tibetan Himalayas, Geol. Rundsch., 83, 32–61, https://doi.org/10.1007/Bf00211893, 1994.
Lukens, C. E., Riebe, C. S., Sklar, L. S., and Shuster, D. L.: Grain size bias in cosmogenic nuclide studies of stream sediment in steep terrain, J. Geophys. Res.-Earth, 121, 978–999, https://doi.org/10.1002/2016jf003859, 2016.
Lupker, M., Blard, P. H., Lave, J., France-Lanord, C., Leanni, L., Puchol, N., Charreau, J., and Bourles, D.: Be-10-derived Himalayan denudation rates and sediment budgets in the Ganga basin, Earth Planet. Sc. Lett., 333, 146–156, https://doi.org/10.1016/j.epsl.2012.04.020, 2012.
Maheo, G., Leloup, P. H., Valli, F., Lacassin, R., Arnaud, N., Paquette, J. L., Fernandez, A., Haibing, L., Farley, K. A., and Tapponnier, P.: Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben, Earth Planet. Sc. Lett., 256, 233–243, https://doi.org/10.1016/j.epsl.2007.01.029, 2007.
Morell, K. D., Sandiford, M., Rajendran, C. P., Rajendran, K., Alimanovic, A., Fink, D., and Sanwal, J.: Geomorphology reveals active decollement geometry in the central Himalayan seismic gap, Lithosphere, 7, 247–256, https://doi.org/10.1130/L407.1, 2015.
Nibourel, L., Herman, F., Cox, S. C., Beyssac, O., and Lave, J.: Provenance analysis using Raman spectroscopy of carbonaceous material: A case study in the Southern Alps of New Zealand, J. Geophys. Res.-Earth, 120, 2056–2079, https://doi.org/10.1002/2015jf003541, 2015.
Niemi, N. A., Oskin, M., Burbank, D. W., Heimsath, A. M., and Gabet, E. J.: Effects of bedrock landslides on cosmogenically determined erosion rates, Earth Planet. Sc. Lett., 237, 480–498, https://doi.org/10.1016/j.epsl.2005.07.009, 2005.
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., and McAninch, J.: Absolute calibration of Be-10 AMS standards, Nucl. Instrum. Meth. B, 258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297, 2007.
Olen, S. M., Bookhagen, B., and Hoffmann, B.: Understanding erosion rates in the Himalayan orogen: A case study from the Arun Valley, J. Geophys. Res.-Earth, 120, 2080–2102, https://doi.org/10.1002/2014jf003410, 2015.
Olen, S. M., Bookhagen, B., and Strecker, M. R.: Role of climate and vegetation density in modulating denudation rates in the Himalaya, Earth Planet. Sc. Lett., 445, 57–67, https://doi.org/10.1016/j.epsl.2016.03.047, 2016.
Phillips, F. M., Argento, D. C., Balco, G., Caffee, M. W., Clem, J., Dunai, T. J., Finkel, R., Goehring, B., Gosse, J. C., Hudson, A. M., Jull, A. J. T., Kelly, M. A., Kurz, M., Lal, D., Lifton, N., Marrero, S. M., Nishiizumi, K., Reedy, R. C., Schaefer, J., Stone, J. O. H., Swanson, T., and Zreda, M. G.: The CRONUS-Earth Project: A synthesis, Quat. Geochronol., 31, 119–154, https://doi.org/10.1016/j.quageo.2015.09.006, 2016.
Portenga, E. W. and Bierman, P. R.: Understanding Earth's eroding surface with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/g111a.1, 2011.
Portenga, E. W., Bierman, P. R., Duncan, C., Corbett, L. B., Kehrwald, N. M., and Rood, D. H.: Erosion rates of the Bhutanese Himalaya determined using in situ-produced 10Be, Geomorphology, 233, 112–126, https://doi.org/10.1016/j.geomorph.2014.09.027, 2015.
Puchol, N., Lavé, J., Lupker, M., Blard, P.-H., Gallo, F., and France-Lanord, C.: Grain-size dependent concentration of cosmogenic 10Be and erosion dynamics in a landslide-dominated Himalayan watershed, Geomorphology, 224, 55–68, https://doi.org/10.1016/j.geomorph.2014.06.019, 2014.
Rades, E. F., Hetzel, R., Strobl, M., Xu, Q., and Ding, L.: Defining rates of landscape evolution in a south Tibetan graben with in situ-produced cosmogenic Be-10, Earth Surf. Proc. Land., 40, 1862–1876, https://doi.org/10.1002/esp.3765, 2015.
Raup, B., Racoviteanu, A., Khalsa, S. J. S., Helm, C., Armstrong, R., and Arnaud, Y.: The GLIMS geospatial glacier database: A new tool for studying glacier change, Glob. Planet. Change, 56, 101–110, https://doi.org/10.1016/j.gloplacha.2006.07.018, 2007.
Rosenkranz, R., Spiegel, C., Schildegen, T., and Wittmann, H.: Erosion rates in the rainiest place on earth: cosmogenic 10Be data from the Shillong Plateau, Himalaya-Karakorum-Tibet workshop, Aussois, 2016.
Salvi, D., Mathew, G., and Kohn, B.: Rapid exhumation of the upper Siang Valley, Arunachal Himalaya since the Pliocene, Geomorphology, 284, 238–249, https://doi.org/10.1016/j.geomorph.2016.09.032, 2017.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India, J. Geophys. Res.-Earth, 119, 83–105, https://doi.org/10.1002/2013jf002955, 2014.
Seward, D. and Burg, J. P.: Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: Constraints from structural and thermochronological data, Tectonophysics, 451, 282–289, https://doi.org/10.1016/j.tecto.2007.11.057, 2008.
Singh, S. K. and France-Lanord, C.: Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments, Earth Planet. Sc. Lett., 202, 645–662, https://doi.org/10.1016/S0012-821X(02)00822-1, 2002.
Sternberg, H.: Untersuchungen über Langen und Querprofil geschiebeführender Flüsse, Z. Bauw., 25, 483–506, 1875.
Stewart, R. J., Hallet, B., Zeitler, P. K., Malloy, M. A., Allen, C. M., and Trippett, D.: Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya, Geology, 36, 711–714, https://doi.org/10.1130/G24890A.1, 2008.
Stone, J.: Air pressure and cosmogenic isotope production, J. Geophys. Res., 105, 23753–23759, 2000.
Strobl, M., Hetzel, R., Niedermann, S., Ding, L., and Zhang, L.: Landscape evolution of a bedrock peneplain on the southern Tibetan Plateau revealed by in situ-produced cosmogenic 10Be and 21Ne, Geomorphology, 153/154, 192–204, https://doi.org/10.1016/j.geomorph.2012.02.024, 2012.
Vance, D., Bickle, M., Ivy-Ochs, S., and Kubik, P. W.: Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments, Earth Planet. Sc. Lett., 206, 273–288, https://doi.org/10.1016/S0012-821X(02)01102-0, 2003.
von Blanckenburg, F., Belshaw, N. S., and O'Nions, R. K.: Separation of Be-9 and cosmogenic Be-10 from environmental materials and SIMS isotope dilution analysis, Chem. Geol., 129, 93–99, https://doi.org/10.1016/0009-2541(95)00157-3, 1996.
Wang, P., Scherler, D., Liu-Zeng, J., Mey, J., Avouac, J. P., Zhang, Y., and Shi, D.: Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet, Science, 346, 978–981, https://doi.org/10.1126/science.1259041, 2014.
West, A. J., Hetzel, R., Li, G., Jin, Z. D., Zhang, F., Hilton, R. G., and Densmore, A. L.: Dilution of Be-10 in detrital quartz by earthquake-induced landslides: Implications for determining denudation rates and potential to provide insights into landslide sediment dynamics, Earth Planet. Sc. Lett., 396, 143–153, https://doi.org/10.1016/j.epsl.2014.03.058, 2014.
Wittmann, H. and von Blanckenburg, F.: The geological significance of cosmogenic nuclides in large lowland river basins, Earth-Sci. Rev., 159, 118–141, https://doi.org/10.1016/j.earscirev.2016.06.001, 2016.
Wobus, C., Heimsath, A., Whipple, K., and Hodges, K.: Active out-of-sequence thrust faulting in the central Nepalese Himalaya, Nature, 434, 1008–1011, 2005.
Yanites, B. J., Tucker, G. E., and Anderson, R. S.: Numerical and analytical models of cosmogenic radionuclide dynamics in landslide-dominated drainage basins, J. Geophys. Res.-Earth, 114, F01007, https://doi.org/10.1029/2008jf001088, 2009.
Yin, A.: Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation, Earth-Sci. Rev., 76, 1–131, https://doi.org/10.1016/j.earscirev.2005.05.004, 2006.
Zeitler, P. K., Meltzer, A. S., Koons, P. O., Craw, D., Hallet, B., Chamberlain, C. P., Kidd, W. S. F., Park, S. K., Seeber, L., Bishop, M., and Shroder, J.: Erosion, Himalayan Geodynamics, and the Geomorphology of Metamorphism, GSA Today, 11, 4–9, https://doi.org/10.1130/1052-5173(2001)011andlt;0004:ehgatgandgt;2.0.co;2, 2001.
Zeitler, P. K., Meltzer, A. S., Brown, L., Kidd, W. S. F., Lim, C., and Enkelmann, E.: Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet, in: Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau, Nie, J., Horton, B. K., and Hoke, G. D., Geological Society of America, 2014.
Short summary
We use geochemical approaches (10Be) on river sediments to quantify the erosion rates across the Tsangpo-Brahmaputra (TB) catchment in the eastern Himalayas. Our approach confirms the high erosion rates in the eastern Himalayan syntaxis region and we suggest that the abrasion of landslide material in the syntaxis is a key process in explaining how erosion signals are transferred to the sediment load.
We use geochemical approaches (10Be) on river sediments to quantify the erosion rates across the...