Articles | Volume 8, issue 4
https://doi.org/10.5194/esurf-8-841-2020
https://doi.org/10.5194/esurf-8-841-2020
Research article
 | 
20 Oct 2020
Research article |  | 20 Oct 2020

Transport-limited fluvial erosion – simple formulation and efficient numerical treatment

Stefan Hergarten

Related authors

MinSIA v1: a lightweight and efficient implementation of the shallow ice approximation
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2025-2242,https://doi.org/10.5194/egusphere-2025-2242, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Old orogen – young topography: lithological contrasts controlling erosion and relief formation in the Bohemian Massif
Jörg Christian Robl, Fabian Dremel, Kurt Stüwe, Stefan Hergarten, Christoph von Hagke, and Derek Fabel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3256,https://doi.org/10.5194/egusphere-2024-3256, 2024
Short summary
A simple model for faceted topographies at normal faults based on an extended stream-power law
Stefan Hergarten
Earth Surf. Dynam., 12, 1315–1327, https://doi.org/10.5194/esurf-12-1315-2024,https://doi.org/10.5194/esurf-12-1315-2024, 2024
Short summary
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
MinVoellmy v1: a lightweight model for simulating rapid mass movements based on a modified Voellmy rheology
Stefan Hergarten
Geosci. Model Dev., 17, 781–794, https://doi.org/10.5194/gmd-17-781-2024,https://doi.org/10.5194/gmd-17-781-2024, 2024
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
A fractal framework for channel–hillslope coupling
Benjamin Kargère, José Constantine, Tristram Hales, Stuart Grieve, and Stewart Johnson
Earth Surf. Dynam., 13, 403–415, https://doi.org/10.5194/esurf-13-403-2025,https://doi.org/10.5194/esurf-13-403-2025, 2025
Short summary
Hillslope diffusion and channel steepness in landscape evolution models
David G. Litwin, Luca C. Malatesta, and Leonard S. Sklar
Earth Surf. Dynam., 13, 277–293, https://doi.org/10.5194/esurf-13-277-2025,https://doi.org/10.5194/esurf-13-277-2025, 2025
Short summary
Modeling memory in gravel-bed rivers: A flow history-dependent relation for evolving thresholds of motion
Claire C. Masteller, Joel P. L. Johnson, Dieter Rickenmann, and Jens M. Turowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3250,https://doi.org/10.5194/egusphere-2024-3250, 2024
Short summary
Old orogen – young topography: lithological contrasts controlling erosion and relief formation in the Bohemian Massif
Jörg Christian Robl, Fabian Dremel, Kurt Stüwe, Stefan Hergarten, Christoph von Hagke, and Derek Fabel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3256,https://doi.org/10.5194/egusphere-2024-3256, 2024
Short summary
Channel concavity controls planform complexity of branching drainage networks
Liran Goren and Eitan Shelef
Earth Surf. Dynam., 12, 1347–1369, https://doi.org/10.5194/esurf-12-1347-2024,https://doi.org/10.5194/esurf-12-1347-2024, 2024
Short summary

Cited articles

Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, 180–181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013. a
Campforts, B., Schwanghart, W., and Govers, G.: Accurate simulation of transient landscape evolution by eliminating numerical diffusion: the TTLEM 1.0 model, Earth Surf. Dynam., 5, 47–66, https://doi.org/10.5194/esurf-5-47-2017, 2017. a, b
Coulthard, T. J.: Landscape evolution models: a software review, Hydrol. Process., 15, 165–173, https://doi.org/10.1002/hyp.426, 2001. a
Culling, W.: Analytical theory of erosion, J. Geol., 68, 336–344, https://doi.org/10.1086/626663, 1960. a
Davy, P. and Lague, D.: Fluvial erosion/transport equation of landscape evolution models revisited, J. Geophys. Res.-Earth, 114, F03007, https://doi.org/10.1029/2008JF001146, 2009. a, b, c, d, e, f, g, h, i
Download
Short summary
Many contemporary models of large-scale fluvial erosion focus on the detachment-limited regime where all material entrained by the river is immediately excavated. This limitation facilitates the comparison with real river profiles and strongly reduces the numerical complexity. Here a simple formulation for the opposite case, transport-limited erosion, and a new numerical scheme that achieves almost the same numerical efficiency as detachment-limited models are presented.
Share