Articles | Volume 8, issue 4
https://doi.org/10.5194/esurf-8-841-2020
https://doi.org/10.5194/esurf-8-841-2020
Research article
 | 
20 Oct 2020
Research article |  | 20 Oct 2020

Transport-limited fluvial erosion – simple formulation and efficient numerical treatment

Stefan Hergarten

Related authors

Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
A simple model for faceted topographies at normal faults based on an extended stream-power law
Stefan Hergarten
EGUsphere, https://doi.org/10.5194/egusphere-2024-336,https://doi.org/10.5194/egusphere-2024-336, 2024
Short summary
MinVoellmy v1: a lightweight model for simulating rapid mass movements based on a modified Voellmy rheology
Stefan Hergarten
Geosci. Model Dev., 17, 781–794, https://doi.org/10.5194/gmd-17-781-2024,https://doi.org/10.5194/gmd-17-781-2024, 2024
Short summary
Scaling between volume and runout of rock avalanches explained by a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 219–229, https://doi.org/10.5194/esurf-12-219-2024,https://doi.org/10.5194/esurf-12-219-2024, 2024
Short summary
The concept of event-size-dependent exhaustion and its application to paraglacial rockslides
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023,https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
Short Communication: Numerically simulated time to steady state is not a reliable measure of landscape response time
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024,https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Modeling the formation of toma hills based on fluid dynamics with a modified Voellmy rheology
Stefan Hergarten
Earth Surf. Dynam., 12, 1193–1203, https://doi.org/10.5194/esurf-12-1193-2024,https://doi.org/10.5194/esurf-12-1193-2024, 2024
Short summary
Drainage rearrangement in an intra-continental mountain belt: a case study from the central South Tian Shan, Kyrgyzstan
Lingxiao Gong, Peter van der Beek, Taylor F. Schildgen, Edward R. Sobel, Simone Racano, Apolline Mariotti, and Fergus McNab
Earth Surf. Dynam., 12, 973–994, https://doi.org/10.5194/esurf-12-973-2024,https://doi.org/10.5194/esurf-12-973-2024, 2024
Short summary
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for Landscape Evolution Models
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Guillaume Adrien Bernard
EGUsphere, https://doi.org/10.5194/egusphere-2024-1239,https://doi.org/10.5194/egusphere-2024-1239, 2024
Short summary
Channel concavity controls plan-form complexity of branching drainage networks
Liran Goren and Eitan Shelef
EGUsphere, https://doi.org/10.5194/egusphere-2024-808,https://doi.org/10.5194/egusphere-2024-808, 2024
Short summary

Cited articles

Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, 180–181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013. a
Campforts, B., Schwanghart, W., and Govers, G.: Accurate simulation of transient landscape evolution by eliminating numerical diffusion: the TTLEM 1.0 model, Earth Surf. Dynam., 5, 47–66, https://doi.org/10.5194/esurf-5-47-2017, 2017. a, b
Coulthard, T. J.: Landscape evolution models: a software review, Hydrol. Process., 15, 165–173, https://doi.org/10.1002/hyp.426, 2001. a
Culling, W.: Analytical theory of erosion, J. Geol., 68, 336–344, https://doi.org/10.1086/626663, 1960. a
Davy, P. and Lague, D.: Fluvial erosion/transport equation of landscape evolution models revisited, J. Geophys. Res.-Earth, 114, F03007, https://doi.org/10.1029/2008JF001146, 2009. a, b, c, d, e, f, g, h, i
Download
Short summary
Many contemporary models of large-scale fluvial erosion focus on the detachment-limited regime where all material entrained by the river is immediately excavated. This limitation facilitates the comparison with real river profiles and strongly reduces the numerical complexity. Here a simple formulation for the opposite case, transport-limited erosion, and a new numerical scheme that achieves almost the same numerical efficiency as detachment-limited models are presented.