Articles | Volume 9, issue 1
Earth Surf. Dynam., 9, 1–18, 2021
https://doi.org/10.5194/esurf-9-1-2021
Earth Surf. Dynam., 9, 1–18, 2021
https://doi.org/10.5194/esurf-9-1-2021

Research article 08 Jan 2021

Research article | 08 Jan 2021

Groundwater erosion of coastal gullies along the Canterbury coast (New Zealand): a rapid and episodic process controlled by rainfall intensity and substrate variability

Aaron Micallef et al.

Related authors

Introducing SlideforMap; a probabilistic finite slope approach for modelling shallow landslide probability in forested situations
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Lucas Karel Agnes Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-140,https://doi.org/10.5194/nhess-2021-140, 2021
Preprint under review for NHESS
Short summary
Machine learning analysis of lifeguard flag decisions and recorded rescues
Chris Houser, Jacob Lehner, Nathan Cherry, and Phil Wernette
Nat. Hazards Earth Syst. Sci., 19, 2541–2549, https://doi.org/10.5194/nhess-19-2541-2019,https://doi.org/10.5194/nhess-19-2541-2019, 2019
Short summary
Directional dependency and coastal framework geology: implications for barrier island resilience
Phillipe A. Wernette, Chris Houser, Bradley A. Weymer, Mark E. Everett, Michael P. Bishop, and Bobby Reece
Earth Surf. Dynam., 6, 1139–1153, https://doi.org/10.5194/esurf-6-1139-2018,https://doi.org/10.5194/esurf-6-1139-2018, 2018
Short summary
Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
Denis Cohen, Fabien Gillet-Chaulet, Wilfried Haeberli, Horst Machguth, and Urs H. Fischer
The Cryosphere, 12, 2515–2544, https://doi.org/10.5194/tc-12-2515-2018,https://doi.org/10.5194/tc-12-2515-2018, 2018
Short summary
Statistical modeling of the long-range-dependent structure of barrier island framework geology and surface geomorphology
Bradley A. Weymer, Phillipe Wernette, Mark E. Everett, and Chris Houser
Earth Surf. Dynam., 6, 431–450, https://doi.org/10.5194/esurf-6-431-2018,https://doi.org/10.5194/esurf-6-431-2018, 2018
Short summary

Related subject area

Physical: Landscape Evolution: modelling and field studies
Hilltop curvature as a proxy for erosion rate: wavelets enable rapid computation and reveal systematic underestimation
William T. Struble and Joshua J. Roering
Earth Surf. Dynam., 9, 1279–1300, https://doi.org/10.5194/esurf-9-1279-2021,https://doi.org/10.5194/esurf-9-1279-2021, 2021
Short summary
Short communication: Analytical models for 2D landscape evolution
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021,https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Effect of rock uplift and Milankovitch timescale variations in precipitation and vegetation cover on catchment erosion rates
Hemanti Sharma, Todd A. Ehlers, Christoph Glotzbach, Manuel Schmid, and Katja Tielbörger
Earth Surf. Dynam., 9, 1045–1072, https://doi.org/10.5194/esurf-9-1045-2021,https://doi.org/10.5194/esurf-9-1045-2021, 2021
Short summary
Modeling glacial and fluvial landform evolution at large scales using a stream-power approach
Stefan Hergarten
Earth Surf. Dynam., 9, 937–952, https://doi.org/10.5194/esurf-9-937-2021,https://doi.org/10.5194/esurf-9-937-2021, 2021
Short summary
Topographic disequilibrium, landscape dynamics and active tectonics: an example from the Bhutan Himalaya
Martine Simoes, Timothée Sassolas-Serrayet, Rodolphe Cattin, Romain Le Roux-Mallouf, Matthieu Ferry, and Dowchu Drukpa
Earth Surf. Dynam., 9, 895–921, https://doi.org/10.5194/esurf-9-895-2021,https://doi.org/10.5194/esurf-9-895-2021, 2021
Short summary

Cited articles

Abotalib, A. Z., Sultan, M., and Elkadiri, R.: Groundwater processes in Saharan Africa: Implications for landscape evolution in arid environments, Earth-Sci. Rev., 156, 108–136, 2016. 
Abrams, D. M., Lobkovsky, A. E., Petroff, A. P., Straub, K. M., McElroy, B., Mohrig, D., Kudrolli, A., and Rothman, D. H.: Growth laws for channel networks incised by groundwater flow, Nat. Geosci., 2, 193–196, 2009. 
Aqualinc Research Limited: Canterbury groundwater model 2. Christchurch (NZ), Aqualinc Research Limited, L07079/1, 2007. 
Bal, A. A.: Valley fills and coastal cliff s buried beneath an alluvial plain: Evidence from variation of permeabilities in gravel aquifers, Canterbury Plains, New Zealand, J. Hydrol., 35, 1–27, 1996. 
Berger, G. W., Tonkin, P. J., and Pillans, B.: Thermo-luminescence ages of post-glacial loess, Rakaia River, South Island, New Zealand, Quaternary Int., 35/36, 177–182, 1996. 
Download
Short summary
We study coastal gullies along the Canterbury coast of New Zealand using field observations, sample analyses, drones, satellites, geophysical instruments and modelling. We show that these coastal gullies form when rainfall intensity is higher than 40 mm per day. The coastal gullies are formed by landslides where buried channels or sand lenses are located. This information allows us to predict where coastal gullies may form in the future.