Articles | Volume 9, issue 2
Earth Surf. Dynam., 9, 253–269, 2021
https://doi.org/10.5194/esurf-9-253-2021
Earth Surf. Dynam., 9, 253–269, 2021
https://doi.org/10.5194/esurf-9-253-2021

Research article 30 Mar 2021

Research article | 30 Mar 2021

Laboratory observations on meltwater meandering rivulets on ice

Roberto Fernández and Gary Parker

Related authors

Experiments on patterns of alluvial cover and bedrock erosion in a meandering channel
Roberto Fernández, Gary Parker, and Colin P. Stark
Earth Surf. Dynam., 7, 949–968, https://doi.org/10.5194/esurf-7-949-2019,https://doi.org/10.5194/esurf-7-949-2019, 2019
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Quantifying thresholds of barrier geomorphic change in a cross-shore sediment-partitioning model
Daniel J. Ciarletta, Jennifer L. Miselis, Justin L. Shawler, and Christopher J. Hein
Earth Surf. Dynam., 9, 183–203, https://doi.org/10.5194/esurf-9-183-2021,https://doi.org/10.5194/esurf-9-183-2021, 2021
Short summary
The enigma of relict large sorted stone stripes in the tropical Ethiopian Highlands
Alexander R. Groos, Janik Niederhauser, Luise Wraase, Falk Hänsel, Thomas Nauss, Naki Akçar, and Heinz Veit
Earth Surf. Dynam., 9, 145–166, https://doi.org/10.5194/esurf-9-145-2021,https://doi.org/10.5194/esurf-9-145-2021, 2021
Short summary
Growing topography due to contrasting rock types in a tectonically dead landscape
Daniel Peifer, Cristina Persano, Martin D. Hurst, Paul Bishop, and Derek Fabel
Earth Surf. Dynam., 9, 167–181, https://doi.org/10.5194/esurf-9-167-2021,https://doi.org/10.5194/esurf-9-167-2021, 2021
Short summary
How do modeling choices and erosion zone locations impact the representation of connectivity and the dynamics of suspended sediments in a multi-source soil erosion model?
Magdalena Uber, Guillaume Nord, Cédric Legout, and Luis Cea
Earth Surf. Dynam., 9, 123–144, https://doi.org/10.5194/esurf-9-123-2021,https://doi.org/10.5194/esurf-9-123-2021, 2021
Short summary
Different coastal marsh sites reflect similar topographic conditions under which bare patches and vegetation recovery occur
Chen Wang, Lennert Schepers, Matthew L. Kirwan, Enrica Belluco, Andrea D'Alpaos, Qiao Wang, Shoujing Yin, and Stijn Temmerman
Earth Surf. Dynam., 9, 71–88, https://doi.org/10.5194/esurf-9-71-2021,https://doi.org/10.5194/esurf-9-71-2021, 2021
Short summary

Cited articles

Abramian, A., Devauchelle, O., and Lajeunesse, E.: Laboratory rivers adjust their shape to sediment transport, Phys. Rev. E, 102, 053101, https://doi.org/10.1103/PhysRevE.102.053101, 2020. 
Allen, J. R. L.: Bed forms due to mass transfer in turbulent flows: a kaleidoscope of phenomena, J. Fluid Mech., 49, 49–63, https://doi.org/10.1017/S0022112071001927, 1971. 
Banwell, A., Hewitt, I., Willis, I., and Arnold, N.: Moulin density controls drainage development beneath the Greenland ice sheet: Moulin Density and Subglacial Drainage, J. Geophys. Res.-Earth, 121, 2248–2269, https://doi.org/10.1002/2015JF003801, 2016. 
Bonnet, S. and Crave, A.: Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography, Geology, 31, 123–126, https://doi.org/10.1130/0091-7613(2003)031<0123:LRTCCI>2.0.CO;2, 2003. 
Braudrick, C. A., Dietrich, W. E., Leverich, G. T., and Sklar, L. S.: Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers, P. Natl. Acad. Sci. USA, 106, 16936–16941, https://doi.org/10.1073/pnas.0909417106, 2009. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
We present a set of observations from laboratory experiments on meltwater meandering rivulets on ice and compare them (qualitatively and quantitatively) to patterns commonly found in meandering channels flowing over different materials. Our channels display great similarities with real rivers in spite of being much smaller. Higher temperature differences between water and ice create deeper and less sinuous channels with bends that preferentially point downstream and are not as rounded.