Articles | Volume 9, issue 2
https://doi.org/10.5194/esurf-9-253-2021
https://doi.org/10.5194/esurf-9-253-2021
Research article
 | 
30 Mar 2021
Research article |  | 30 Mar 2021

Laboratory observations on meltwater meandering rivulets on ice

Roberto Fernández and Gary Parker

Related authors

Influence of cohesive clay on wave–current ripple dynamics captured in a 3D phase diagram
Xuxu Wu, Jonathan Malarkey, Roberto Fernández, Jaco H. Baas, Ellen Pollard, and Daniel R. Parsons
Earth Surf. Dynam., 12, 231–247, https://doi.org/10.5194/esurf-12-231-2024,https://doi.org/10.5194/esurf-12-231-2024, 2024
Short summary
Experiments on patterns of alluvial cover and bedrock erosion in a meandering channel
Roberto Fernández, Gary Parker, and Colin P. Stark
Earth Surf. Dynam., 7, 949–968, https://doi.org/10.5194/esurf-7-949-2019,https://doi.org/10.5194/esurf-7-949-2019, 2019
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024,https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Quantifying the migration rate of drainage divides from high-resolution topographic data
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024,https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024,https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024,https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary
Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, and Jeremy G. Venditti
Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024,https://doi.org/10.5194/esurf-12-367-2024, 2024
Short summary

Cited articles

Abramian, A., Devauchelle, O., and Lajeunesse, E.: Laboratory rivers adjust their shape to sediment transport, Phys. Rev. E, 102, 053101, https://doi.org/10.1103/PhysRevE.102.053101, 2020. 
Allen, J. R. L.: Bed forms due to mass transfer in turbulent flows: a kaleidoscope of phenomena, J. Fluid Mech., 49, 49–63, https://doi.org/10.1017/S0022112071001927, 1971. 
Banwell, A., Hewitt, I., Willis, I., and Arnold, N.: Moulin density controls drainage development beneath the Greenland ice sheet: Moulin Density and Subglacial Drainage, J. Geophys. Res.-Earth, 121, 2248–2269, https://doi.org/10.1002/2015JF003801, 2016. 
Bonnet, S. and Crave, A.: Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography, Geology, 31, 123–126, https://doi.org/10.1130/0091-7613(2003)031<0123:LRTCCI>2.0.CO;2, 2003. 
Braudrick, C. A., Dietrich, W. E., Leverich, G. T., and Sklar, L. S.: Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers, P. Natl. Acad. Sci. USA, 106, 16936–16941, https://doi.org/10.1073/pnas.0909417106, 2009. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
We present a set of observations from laboratory experiments on meltwater meandering rivulets on ice and compare them (qualitatively and quantitatively) to patterns commonly found in meandering channels flowing over different materials. Our channels display great similarities with real rivers in spite of being much smaller. Higher temperature differences between water and ice create deeper and less sinuous channels with bends that preferentially point downstream and are not as rounded.