Articles | Volume 4, issue 2
https://doi.org/10.5194/esurf-4-391-2016
https://doi.org/10.5194/esurf-4-391-2016
Research article
 | 
19 May 2016
Research article |  | 19 May 2016

Predicting the roughness length of turbulent flows over landscapes with multi-scale microtopography

Jon D. Pelletier and Jason P. Field

Related authors

Controls on the hydraulic geometry of alluvial channels: bank stability to gravitational failure, the critical-flow hypothesis, and conservation of mass and energy
Jon D. Pelletier
Earth Surf. Dynam., 9, 379–391, https://doi.org/10.5194/esurf-9-379-2021,https://doi.org/10.5194/esurf-9-379-2021, 2021
Short summary
Quantifying the controls on potential soil production rates: a case study of the San Gabriel Mountains, California
Jon D. Pelletier
Earth Surf. Dynam., 5, 479–492, https://doi.org/10.5194/esurf-5-479-2017,https://doi.org/10.5194/esurf-5-479-2017, 2017
Short summary
A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input
Christopher Shepard, Marcel G. Schaap, Jon D. Pelletier, and Craig Rasmussen
SOIL, 3, 67–82, https://doi.org/10.5194/soil-3-67-2017,https://doi.org/10.5194/soil-3-67-2017, 2017
Short summary
Constraining frequency–magnitude–area relationships for rainfall and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River basins, USA
Caitlin A. Orem and Jon D. Pelletier
Hydrol. Earth Syst. Sci., 20, 4483–4501, https://doi.org/10.5194/hess-20-4483-2016,https://doi.org/10.5194/hess-20-4483-2016, 2016
Short summary
The influence of Holocene vegetation changes on topography and erosion rates: a case study at Walnut Gulch Experimental Watershed, Arizona
Jon D. Pelletier, Mary H. Nichols, and Mark A. Nearing
Earth Surf. Dynam., 4, 471–488, https://doi.org/10.5194/esurf-4-471-2016,https://doi.org/10.5194/esurf-4-471-2016, 2016
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Linear-stability analysis of plane beds under flows with suspended loads
Koji Ohata, Hajime Naruse, and Norihiro Izumi
Earth Surf. Dynam., 11, 961–977, https://doi.org/10.5194/esurf-11-961-2023,https://doi.org/10.5194/esurf-11-961-2023, 2023
Short summary
Estimating surface water availability in high mountain rock slopes using a numerical energy balance model
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023,https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Sediment source and sink identification using Sentinel-2 and a small network of turbidimeters on the Vjosa River
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
Earth Surf. Dynam., 11, 881–897, https://doi.org/10.5194/esurf-11-881-2023,https://doi.org/10.5194/esurf-11-881-2023, 2023
Short summary
Spatiotemporal bedload transport patterns over two-dimensional bedforms
Kate C. P. Leary, Leah Tevis, and Mark Schmeeckle
Earth Surf. Dynam., 11, 835–847, https://doi.org/10.5194/esurf-11-835-2023,https://doi.org/10.5194/esurf-11-835-2023, 2023
Short summary
Ice-buttressing-controlled rock slope failure on a cirque headwall, Lake District, UK
Paul A. Carling, John D. Jansen, Teng Su, Jane Lund Andersen, and Mads Faurschou Knudsen
Earth Surf. Dynam., 11, 817–833, https://doi.org/10.5194/esurf-11-817-2023,https://doi.org/10.5194/esurf-11-817-2023, 2023
Short summary

Cited articles

Arya, S. P. S.: A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice, J. Geophys. Res., 80, 3447–3454, 1975.
Bagnold, R. A.: The movement of desert sand, P. Roy. Soc. Lond. A Mat., 157, 594–620, 1938.
Bauer, B. O., Sherman, D. J., and Wolcott, J. F.: Sources of uncertainty in shear stress and roughness length estimates derived from velocity profiles, Prof. Geogr., 44, 453–464, 1992.
Bergeron, N. E. and Abrahams, A. D.: Estimating shear velocity and roughness length from velocity profiles, Water Resour. Res., 28, 2155–2158, https://doi.org/10.1029/92WR00897, 1992.
Bertin, J. J. and Cummings, R. M.: Aerodynamics for Engineers, 6th Edn., Prentice-Hall, New York, 832 pp., 2013.
Download
Short summary
The law of the wall is one of the fundamental equations at the boundary of atmospheric sciences and aeolian geomorphology. In this paper, we quantify the relationship between the key parameter of the law of the wall, i.e., the roughness length, and measures of microtopography. We propose a method for predicting the roughness length that works for landscapes with microtopography over a wide range of spatial scales. The method is tested against approximately 60 000 measurements of roughness length.