Articles | Volume 4, issue 2
https://doi.org/10.5194/esurf-4-391-2016
https://doi.org/10.5194/esurf-4-391-2016
Research article
 | 
19 May 2016
Research article |  | 19 May 2016

Predicting the roughness length of turbulent flows over landscapes with multi-scale microtopography

Jon D. Pelletier and Jason P. Field

Related authors

Controls on the hydraulic geometry of alluvial channels: bank stability to gravitational failure, the critical-flow hypothesis, and conservation of mass and energy
Jon D. Pelletier
Earth Surf. Dynam., 9, 379–391, https://doi.org/10.5194/esurf-9-379-2021,https://doi.org/10.5194/esurf-9-379-2021, 2021
Short summary
Quantifying the controls on potential soil production rates: a case study of the San Gabriel Mountains, California
Jon D. Pelletier
Earth Surf. Dynam., 5, 479–492, https://doi.org/10.5194/esurf-5-479-2017,https://doi.org/10.5194/esurf-5-479-2017, 2017
Short summary
A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input
Christopher Shepard, Marcel G. Schaap, Jon D. Pelletier, and Craig Rasmussen
SOIL, 3, 67–82, https://doi.org/10.5194/soil-3-67-2017,https://doi.org/10.5194/soil-3-67-2017, 2017
Short summary
Constraining frequency–magnitude–area relationships for rainfall and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River basins, USA
Caitlin A. Orem and Jon D. Pelletier
Hydrol. Earth Syst. Sci., 20, 4483–4501, https://doi.org/10.5194/hess-20-4483-2016,https://doi.org/10.5194/hess-20-4483-2016, 2016
Short summary
The influence of Holocene vegetation changes on topography and erosion rates: a case study at Walnut Gulch Experimental Watershed, Arizona
Jon D. Pelletier, Mary H. Nichols, and Mark A. Nearing
Earth Surf. Dynam., 4, 471–488, https://doi.org/10.5194/esurf-4-471-2016,https://doi.org/10.5194/esurf-4-471-2016, 2016
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Modeling the inhibition effect of straw checkerboard barriers on wind-blown sand
Haojie Huang
Earth Surf. Dynam., 11, 167–181, https://doi.org/10.5194/esurf-11-167-2023,https://doi.org/10.5194/esurf-11-167-2023, 2023
Short summary
Exploring the transition between water- and wind-dominated landscapes in Deep Springs, California, as an analog for transitioning landscapes on Mars
Taylor Dorn and Mackenzie Day
Earth Surf. Dynam., 11, 149–165, https://doi.org/10.5194/esurf-11-149-2023,https://doi.org/10.5194/esurf-11-149-2023, 2023
Short summary
Geology and vegetation control landsliding on forest-managed slopes in scarplands
Daniel Draebing, Tobias Gebhard, and Miriam Pheiffer
Earth Surf. Dynam., 11, 71–88, https://doi.org/10.5194/esurf-11-71-2023,https://doi.org/10.5194/esurf-11-71-2023, 2023
Short summary
Entrainment and deposition of boulders in a gravel bed river
Pascal Allemand, Eric Lajeunesse, Olivier Devauchelle, and Vincent J. Langlois
Earth Surf. Dynam., 11, 21–32, https://doi.org/10.5194/esurf-11-21-2023,https://doi.org/10.5194/esurf-11-21-2023, 2023
Short summary
Coupling between downstream variations of channel width and local pool–riffle bed topography
Shawn M. Chartrand, A. Mark Jellinek, Marwan A. Hassan, and Carles Ferrer-Boix
Earth Surf. Dynam., 11, 1–20, https://doi.org/10.5194/esurf-11-1-2023,https://doi.org/10.5194/esurf-11-1-2023, 2023
Short summary

Cited articles

Arya, S. P. S.: A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice, J. Geophys. Res., 80, 3447–3454, 1975.
Bagnold, R. A.: The movement of desert sand, P. Roy. Soc. Lond. A Mat., 157, 594–620, 1938.
Bauer, B. O., Sherman, D. J., and Wolcott, J. F.: Sources of uncertainty in shear stress and roughness length estimates derived from velocity profiles, Prof. Geogr., 44, 453–464, 1992.
Bergeron, N. E. and Abrahams, A. D.: Estimating shear velocity and roughness length from velocity profiles, Water Resour. Res., 28, 2155–2158, https://doi.org/10.1029/92WR00897, 1992.
Bertin, J. J. and Cummings, R. M.: Aerodynamics for Engineers, 6th Edn., Prentice-Hall, New York, 832 pp., 2013.
Download
Short summary
The law of the wall is one of the fundamental equations at the boundary of atmospheric sciences and aeolian geomorphology. In this paper, we quantify the relationship between the key parameter of the law of the wall, i.e., the roughness length, and measures of microtopography. We propose a method for predicting the roughness length that works for landscapes with microtopography over a wide range of spatial scales. The method is tested against approximately 60 000 measurements of roughness length.