Articles | Volume 6, issue 2
https://doi.org/10.5194/esurf-6-487-2018
https://doi.org/10.5194/esurf-6-487-2018
Research article
 | 
14 Jun 2018
Research article |  | 14 Jun 2018

The influence of a vegetated bar on channel-bend flow dynamics

Sharon Bywater-Reyes, Rebecca M. Diehl, and Andrew C. Wilcox

Related authors

A remote field course implementing high-resolution topography acquisition with geomorphic applications
Sharon Bywater-Reyes and Beth Pratt-Sitaula
Geosci. Commun., 5, 101–117, https://doi.org/10.5194/gc-5-101-2022,https://doi.org/10.5194/gc-5-101-2022, 2022
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Linear-stability analysis of plane beds under flows with suspended loads
Koji Ohata, Hajime Naruse, and Norihiro Izumi
Earth Surf. Dynam., 11, 961–977, https://doi.org/10.5194/esurf-11-961-2023,https://doi.org/10.5194/esurf-11-961-2023, 2023
Short summary
Estimating surface water availability in high mountain rock slopes using a numerical energy balance model
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023,https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Sediment source and sink identification using Sentinel-2 and a small network of turbidimeters on the Vjosa River
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
Earth Surf. Dynam., 11, 881–897, https://doi.org/10.5194/esurf-11-881-2023,https://doi.org/10.5194/esurf-11-881-2023, 2023
Short summary
Spatiotemporal bedload transport patterns over two-dimensional bedforms
Kate C. P. Leary, Leah Tevis, and Mark Schmeeckle
Earth Surf. Dynam., 11, 835–847, https://doi.org/10.5194/esurf-11-835-2023,https://doi.org/10.5194/esurf-11-835-2023, 2023
Short summary
Ice-buttressing-controlled rock slope failure on a cirque headwall, Lake District, UK
Paul A. Carling, John D. Jansen, Teng Su, Jane Lund Andersen, and Mads Faurschou Knudsen
Earth Surf. Dynam., 11, 817–833, https://doi.org/10.5194/esurf-11-817-2023,https://doi.org/10.5194/esurf-11-817-2023, 2023
Short summary

Cited articles

Aberle, J. and Järvelä, J.: Flow resistance of emergent rigid and flexible floodplain vegetation, J. Hydraul. Res., 51, 33–45, https://doi.org/10.1080/00221686.2012.754795, 2013. 
Abu-Aly, T. R., Pasternack, G. B., Wyrick, J. R., Barker, R., Massa, D., and Johnson, T.: Effects of LiDAR-derived, spatially distributed vegetation roughness on two-dimensional hydraulics in a gravel-cobble river at flows of 0.2 to 20 times bankfull, Geomorphology, 206, 468–482, https://doi.org/10.1016/j.geomorph.2013.10.017, 2014. 
Allmendinger, N. E., Pizzuto, J. E., Potter, N., Johnson, T. E., and Hession, W. C.: The influence of riparian vegetation on stream width, eastern Pennsylvania, USA, Geol. Soc. Am. Bull., 117, 229–243, https://doi.org/10.1130/B25447.1, 2005. 
Amlin, N. M. and Rood, S. B.: Comparative tolerances of riparian willows and cottonwoods to water-table decline, Wetlands, 22, 338–346, 2002. 
Antonarakis, A. S., Richards, K. S., Brasington, J., and Muller, E.: Determining leaf area index and leafy tree roughness using terrestrial laser scanning, Water Resour. Res., 46, W06510, https://doi.org/10.1029/2009WR008318, 2010. 
Download
Short summary
Channel bends and bars make up an important physical and ecological unit within rivers. Many riparian vegetation species need river bars for their life cycle, colonizing bars after flooding events. Once vegetation is established on bars, they can alter the flow and patterns of erosion and deposition. We used a hydraulic model to quantify the impact such riparian vegetation of various sizes and densities has on flow dynamics and inferred the expected changes in river erosion and deposition.