Articles | Volume 6, issue 3
Earth Surf. Dynam., 6, 687–703, 2018
Earth Surf. Dynam., 6, 687–703, 2018

Research article 29 Aug 2018

Research article | 29 Aug 2018

Assessing the large-scale impacts of environmental change using a coupled hydrology and soil erosion model

Joris P. C. Eekhout et al.

Related authors

Why increased extreme precipitation under climate change negatively affects water security
Joris P. C. Eekhout, Johannes E. Hunink, Wilco Terink, and Joris de Vente
Hydrol. Earth Syst. Sci., 22, 5935–5946,,, 2018
Short summary
Morphodynamic regime change in a reconstructed lowland stream
J. P. C. Eekhout, R. G. A. Fraaije, and A. J. F. Hoitink
Earth Surf. Dynam., 2, 279–293,,, 2014

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Inertial drag and lift forces for coarse grains on rough alluvial beds measured using in-grain accelerometers
Georgios Maniatis, Trevor Hoey, Rebecca Hodge, Dieter Rickenmann, and Alexandre Badoux
Earth Surf. Dynam., 8, 1067–1099,,, 2020
Short summary
GERALDINE (Google Earth Engine supRaglAciaL Debris INput dEtector): a new tool for identifying and monitoring supraglacial landslide inputs
William D. Smith, Stuart A. Dunning, Stephen Brough, Neil Ross, and Jon Telling
Earth Surf. Dynam., 8, 1053–1065,,, 2020
Short summary
Short communication: Multiscalar roughness length decomposition in fluvial systems using a transform-roughness correlation (TRC) approach
David L. Adams and Andrea Zampiron
Earth Surf. Dynam., 8, 1039–1051,,, 2020
Short summary
Evolution of events before and after the 17 June 2017 rock avalanche at Karrat Fjord, West Greenland – a multidisciplinary approach to detecting and locating unstable rock slopes in a remote Arctic area
Kristian Svennevig, Trine Dahl-Jensen, Marie Keiding, John Peter Merryman Boncori, Tine B. Larsen, Sara Salehi, Anne Munck Solgaard, and Peter H. Voss
Earth Surf. Dynam., 8, 1021–1038,,, 2020
Short summary
Complementing scale experiments of rivers and estuaries with numerically modelled hydrodynamics
Steven A. H. Weisscher, Marcio Boechat-Albernaz, Jasper R. F. W. Leuven, Wout M. Van Dijk, Yasuyuki Shimizu, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 955–972,,, 2020
Short summary

Cited articles

Abrahams, A. D., Li, G., Krishnan, C., and Atkinson, J. F.: A sediment transport equation for interrill overland flow on rough surfaces, Earth Surf. Proc. Land., 26, 1443–1459,, 2001. a
Akima, H.: Algorithm 761; scattered-data surface fitting that has the accuracy of a cubic polynomial, ACM T. Math. Software, 22, 362–371,, 1996. a
Allen, R. G., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop requirements, Tech. Rep., 56,, 1998. a
Avendaño-Salas, C., Sanz-Montero, E., Cobo-Rayán, R., and Gómez-Montaña, J. L.: Capacity Situation in Spanish Reservoirs, in: ICOLD, Proceedings of the 19th International Symposium on Large Dams, Florence, Italy, 849–862, 1997. a
Short summary
Climate change will likely increase soil erosion in many locations worldwide. This increase in erosion will have large-scale impacts, such as the siltation of reservoirs. We developed a new soil erosion model to evaluate these impacts, which has an advantage over existing models in that it includes most relevant processes: rainfall–runoff generation, vegetation development, and soil erosion and deposition. The model is suited to perform scenario studies on climate change and land management.