Articles | Volume 9, issue 3
https://doi.org/10.5194/esurf-9-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Earthquake-induced debris flows at Popocatépetl Volcano, Mexico
Facoltà di Scienze e Tecnologie, Free University of Bozen-Bolzano, Bolzano, Italy
now at: Research Institute for Geo-Hydrological Protection, Consiglio Nazionale delle Ricerche, Padova, Italy
Lucia Capra
Centro de Geociencias, Campus Juriquilla, Universidad Nacional Autónoma de
México, Querétaro, México
Gianluca Norini
Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche, Milan, Italy
Norma Dávila
Escuela Nacional de Estudios Superiores, Campus Juriquilla, Universidad Nacional
Autónoma de México, Querétaro, México
Dolors Ferrés
Escuela Nacional de Ciencias de la Tierra, Universidad Nacional
Autónoma de México, Ciudad de México, México
Víctor Hugo Márquez-Ramírez
Centro de Geociencias, Campus Juriquilla, Universidad Nacional Autónoma de
México, Querétaro, México
Eduard Pico
Centro de Geociencias, Campus Juriquilla, Universidad Nacional Autónoma de
México, Querétaro, México
Related authors
Elisabetta Corte, Andrea Ajmar, Carlo Camporeale, Alberto Cina, Velio Coviello, Fabio Giulio Tonolo, Alberto Godio, Myrta Maria Macelloni, Stefania Tamea, and Andrea Vergnano
Earth Syst. Sci. Data, 16, 3283–3306, https://doi.org/10.5194/essd-16-3283-2024, https://doi.org/10.5194/essd-16-3283-2024, 2024
Short summary
Short summary
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of water flows in a large proglacial area (4 km2) of the northwestern Alps. Activities were developed using a multidisciplinary approach and merge geomatic, hydraulic, and geophysical methods. The goal is to allow researchers to characterize, monitor, and model a number of physical processes and interconnected phenomena, with a broader perspective and deeper understanding than a single-discipline approach.
Andreas Schimmel, Velio Coviello, and Francesco Comiti
Nat. Hazards Earth Syst. Sci., 22, 1955–1968, https://doi.org/10.5194/nhess-22-1955-2022, https://doi.org/10.5194/nhess-22-1955-2022, 2022
Short summary
Short summary
The estimation of debris flow velocity and volume is a fundamental task for the development of early warning systems and other mitigation measures. This work provides a first approach for estimating the velocity and the total volume of debris flows based on the seismic signal detected with simple, low-cost geophones installed along the debris flow channel. The developed method was applied to seismic data collected at three test sites in the Alps: Gadria and Cancia (IT) and Lattenbach (AT).
Elisabetta Corte, Andrea Ajmar, Carlo Camporeale, Alberto Cina, Velio Coviello, Fabio Giulio Tonolo, Alberto Godio, Myrta Maria Macelloni, Stefania Tamea, and Andrea Vergnano
Earth Syst. Sci. Data, 16, 3283–3306, https://doi.org/10.5194/essd-16-3283-2024, https://doi.org/10.5194/essd-16-3283-2024, 2024
Short summary
Short summary
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of water flows in a large proglacial area (4 km2) of the northwestern Alps. Activities were developed using a multidisciplinary approach and merge geomatic, hydraulic, and geophysical methods. The goal is to allow researchers to characterize, monitor, and model a number of physical processes and interconnected phenomena, with a broader perspective and deeper understanding than a single-discipline approach.
Andreas Schimmel, Velio Coviello, and Francesco Comiti
Nat. Hazards Earth Syst. Sci., 22, 1955–1968, https://doi.org/10.5194/nhess-22-1955-2022, https://doi.org/10.5194/nhess-22-1955-2022, 2022
Short summary
Short summary
The estimation of debris flow velocity and volume is a fundamental task for the development of early warning systems and other mitigation measures. This work provides a first approach for estimating the velocity and the total volume of debris flows based on the seismic signal detected with simple, low-cost geophones installed along the debris flow channel. The developed method was applied to seismic data collected at three test sites in the Alps: Gadria and Cancia (IT) and Lattenbach (AT).
A. Ariza, N. A. Davila, H. Kemper, and G. Kemper
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 679–684, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-679-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-679-2021, 2021
Xyoli Pérez-Campos, Víctor H. Espíndola, Daniel González-Ávila, Betty Zanolli Fabila, Víctor H. Márquez-Ramírez, Raphael S. M. De Plaen, Juan Carlos Montalvo-Arrieta, and Luis Quintanar
Solid Earth, 12, 1411–1419, https://doi.org/10.5194/se-12-1411-2021, https://doi.org/10.5194/se-12-1411-2021, 2021
Short summary
Short summary
Mexican seismic stations witnessed a reduction in noise level as a result of the COVID-19 lockdown strategies. The largest drop was observed in Hermosillo, which is also the city with the fastest noise-level recovery and a quick increase in confirmed COVID-19 cases. Since 1 June 2020, a traffic-light system has modulated the re-opening of economic activities for each state, which is reflected in noise levels. Noise reduction has allowed the identification and perception of smaller earthquakes.
Raphael S. M. De Plaen, Víctor Hugo Márquez-Ramírez, Xyoli Pérez-Campos, F. Ramón Zuñiga, Quetzalcoatl Rodríguez-Pérez, Juan Martín Gómez González, and Lucia Capra
Solid Earth, 12, 713–724, https://doi.org/10.5194/se-12-713-2021, https://doi.org/10.5194/se-12-713-2021, 2021
Short summary
Short summary
COVID-19 pandemic lockdowns in countries with a dominant informal economy have been a greater challenge than in other places. This motivated the monitoring of the mobility of populations with seismic noise throughout the various phases of lockdown and in the city of Querétaro (central Mexico). Our results emphasize the benefit of densifying urban seismic networks, even with low-cost instruments, to observe variations in mobility at the city scale over exclusively relying on mobile technology.
Leandra M. Weydt, Ángel Andrés Ramírez-Guzmán, Antonio Pola, Baptiste Lepillier, Juliane Kummerow, Giuseppe Mandrone, Cesare Comina, Paromita Deb, Gianluca Norini, Eduardo Gonzalez-Partida, Denis Ramón Avellán, José Luis Macías, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 571–598, https://doi.org/10.5194/essd-13-571-2021, https://doi.org/10.5194/essd-13-571-2021, 2021
Short summary
Short summary
Petrophysical and mechanical rock properties are essential for reservoir characterization of the deep subsurface and are commonly used for the population of numerical models or the interpretation of geophysical data. The database presented here aims at providing easily accessible information on rock properties and chemical analyses complemented by extensive metadata (location, stratigraphy, petrography) covering volcanic, sedimentary, metamorphic and igneous rocks from Jurassic to Holocene age.
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Gianluca Norini and Gianluca Groppelli
Solid Earth, 11, 2549–2556, https://doi.org/10.5194/se-11-2549-2020, https://doi.org/10.5194/se-11-2549-2020, 2020
Short summary
Short summary
We identified several problems in Urbani et al. (2020), showing that their model does not conform to the age and location of faulting, identification and delimitation of uplifted areas and apical depressions, temperature and lithological well log, and stratigraphic and radiometric data. Published data indicate that the pressurization of the Los Humeros volcanic complex (LHVC) magmatic–hydrothermal system driving resurgence faulting occurs at a greater depth.
Cited articles
Almeida, L., Cleef, A. M., Herrera, A., Velazquez, A., and Luna, I.: El
zacatonal alpino del Volcán Popocatépetl, México, y su
posición en las montañas tropicales de América, Phytocoenologia,
22, 391–436, https://doi.org/10.1127/phyto/22/1994/391, 1994.
Arámbula-Mendoza, R., Valdés-González, C., and
Martínez-Bringas, A.: Temporal and spatial variation of the stress
state of Popocatépetl Volcano, Mexico, J. Volcanol. Geotherm. Res.,
196, 156–168, https://doi.org/10.1016/j.jvolgeores.2010.07.007, 2010.
Bouchon, M., Schultz, C. A., and Toksoz, M. N.: Effect of three-dimensional
topography on seismic motion, J. Geophys. Res., 101, 5835–5846, 1996.
Camacho, H.: Efectos del temblor sobre el terrano: Chapter V, Tercera Parte,
in: Memoria Relativa al Terremoto Mexicano del 3 de Enero de 1920, Instituto Geológico de México, Ciudad de México, México,
89–94, 1920.
Capra, L., Poblete, M. A., and Alvarado, R.: The 1997 and 2001 lahars of
Popocatépetl volcano (Central Mexico): Textural and sedimentological
constraints on their origin and hazards, J. Volcanol. Geotherm. Res.,
131, 351–369, https://doi.org/10.1016/S0377-0273(03)00413-X, 2004.
Capra, L., Bernal, J. P., Carrasco-Núñez, G., and Roverato, M.:
Climatic fluctuations as a significant contributing factor for volcanic
collapses. Evidence from Mexico during the Late Pleistocene, Glob. Planet.
Change, 100, 194–203, https://doi.org/10.1016/j.gloplacha.2012.10.017, 2013.
Capra, L., Coviello, V., Borselli, L., Márquez-Ramírez, V.-H., and Arámbula-Mendoza, R.: Hydrological control of large hurricane-induced lahars: evidence from rainfall-runoff modeling, seismic and video monitoring, Nat. Hazards Earth Syst. Sci., 18, 781–794, https://doi.org/10.5194/nhess-18-781-2018, 2018.
Castillo, M., Muñoz-Salinas, E., and Arce, J. L.: Evaluación del
sistema erosivo fluvial en el volcán Popocatépetl (México)
mediante análisis morfométricos, Bol. la Soc. Geol. Mex., 67,
167–183, 2015.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L.,
Lin, C. W., Horng, M. J., Chen, T. C., Milliman, J., and Stark, C. P.:
Earthquake-triggered increase in sediment delivery from an active mountain
belt, Geology, 32, 733–736, https://doi.org/10.1130/G20639.1, 2004.
Davis, L. L. and West, L. R.: Observed effects of topography on ground
motion, Bull. Seismol. Soc. Am., 63, 283–298, 1973.
De Cserna, Z., De la Fuente-Duch, M., Palacio-Neto, M., Triay, L.,
Mitre-Salazar, L. M., and Mota-Palomino, R.: Estructura geológica,
gravimétrica y relaciones neotectónicas regionales de la Cuenca de
México, Bol. Inst. Geol. UNAM., 104, 71 pp., 1988.
Delcamp, A., Roberti, G., and van Wyk de Vries, B.: Water in volcanoes:
evolution, storage and rapid release during landslides, Bull. Volcanol.,
78, 87, https://doi.org/10.1007/s00445-016-1082-8, 2016.
Del Gaudio, V. and Wasowski, J.: Directivity of slope dynamic response to
seismic shaking, Geophys. Res. Lett., 34, L12301,
https://doi.org/10.1029/2007GL029842, 2007.
Domènech, G., Fan, X., Scaringi, G., van Asch, T. W. J., Xu, Q., Huang,
R., and Hales, T. C.: Modelling the role of material depletion, grain
coarsening and revegetation in debris flow occurrences after the 2008
Wenchuan earthquake, Eng. Geol., 250, 34–44,
https://doi.org/10.1016/j.enggeo.2019.01.010, 2019.
ESA: Copernicus Open Access Hub, available at: https://scihub.copernicus.eu/, last access: 1 April 2020.
Espinasa-Perena, R. and Martín-Del Pozzo, A. L.: Morphostratigraphic
evolution of popocatépetl volcano, México, Spec. Pap. Geol. Soc.
Am., 402, 115–137, https://doi.org/10.1130/2006.2402(05), 2006.
Fan, X., Scaringi, G., Korup, O., West, A. J., van Westen, C. J., Tanyas,
H., Hovius, N., Hales, T. C., Jibson, R. W., Allstadt, K. E., Zhang, L.,
Evans, S. G., Xu, C., Li, G., Pei, X., Xu, Q., and Huang, R.:
Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and
Impacts, Rev. Geophys., 57, 421–503, https://doi.org/10.1029/2018RG000626, 2019.
Fan, X., Yunus, A. P., Scaringi, G., Catani, F., Siva Subramanian, S., Xu,
Q., and Huang, R.: Rapidly Evolving Controls of Landslides After a Strong
Earthquake and Implications for Hazard Assessments, Geophys. Res. Lett.,
48, 1–12, https://doi.org/10.1029/2020GL090509, 2021.
Flores, T.: Efectos geologicos: Chapter IV, Primera Parte, in: Memoria del
terremoto Mexicano del 3 de enero de 1920, Instituto Geológico de México, Ciudad de México, México, 27–29, 1922.
Furumura, T. and Singh, S. K.: Regional Wave Propagation from Mexican
Subduction Zone Earthquakes: The Attenuation Functions for Interplate and
Inslab Events, Bull. Seismol. Soc. Am., 92, 2110–2125, 2002.
García, D., Singh, S. K., Herra, M., Ordaz, M., and Pacheco, J. F.:
Inslab Earthquakes of Central Mexico: Peak Ground-Motion Parameters and
Response Spectra, Bull. Seismol. Soc. Am., 95, 2272–2282,
https://doi.org/10.1785/0120050072, 2005.
García-Palomo, A., Macías, J. L., Jiménez, A., Tolson, G.,
Mena, M., Sánchez-Núñez, J. M., Arce, J. L., Layer, P. W.,
Santoyo, M. Á., and Lermo-Samaniego, J.: NW-SE Pliocene-Quaternary
extension in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt,
J. Volcanol. Geotherm. Res., 349, 240–255,
https://doi.org/10.1016/j.jvolgeores.2017.11.005, 2018.
Geli, L., Bard, P., and Jullien, B.: The Effect Of Topography On Earthquake
Ground Motion: A Review And New Results, Bull. Seismol. Soc. Am., 78,
42–63, 1988.
Johnson, P. J., Valentine, G. A., Stauffer, P. H., Lowry, C. S., Sonder, I.,
Pulgarín, B. A., Santacoloma, C. C., and Agudelo, A.: Groundwater
drainage from fissures as a source for lahars, Bull. Volcanol., 80, 39,
https://doi.org/10.1007/s00445-018-1214-4, 2018.
Julio-Miranda, P., Delgado-Granados, H., Huggel, C., and Kääb, A.:
Impact of the eruptive activity on glacier evolution at Popocatépetl
Volcano (México) during 1994-2004, J. Volcanol. Geotherm. Res.,
170, 86–98, https://doi.org/10.1016/j.jvolgeores.2007.09.011, 2008.
Kameda, J., Kamiya, H., Masumoto, H., Morisaki, T., Hiratsuka, T., and Inaoi,
C.: Fluidized landslides triggered by the liquefaction of subsurface
volcanic deposits during the 2018 Iburi–Tobu earthquake, Hokkaido, Sci.
Rep., 9, 1–6, https://doi.org/10.1038/s41598-019-48820-y, 2019.
Keefer, D. K.: Landslides caused by earthquakes, GSA Bull., 95, 406–421,
https://doi.org/10.1016/0148-9062(85)92394-0, 1984.
Keefer, D. K., Wartman, J., Navarro Ochoa, C., Rodriguez-Marek, A., and
Wieczorek, G. F.: Landslides caused by the M 7.6 Tecomán, Mexico
earthquake of January 21, 2003, Eng. Geol., 86, 183–197,
https://doi.org/10.1016/j.enggeo.2006.02.017, 2006.
LaHusen, S. R., Duvall, A. R., Booth, A. M., Grant, A., Mishkin, B. A.,
Montgomery, D. R., Struble, W., Roering, J. J., and Wartman, J.: Rainfall
triggers more deep-seated landslides than Cascadia earthquakes in the Oregon
Coast Range, USA, Sci. Adv., 6, eaba6790, https://doi.org/10.1126/sciadv.aba6790, 2020.
Major, J. J., Bertin, D., Pierson, T. C., Amigo, A., Iroumé, A., Ulloa,
H., and Castro, J.: Extraordinary sediment delivery and rapid geomorphic
response following the 2008–2009 eruption of Chaitén Volcano, Chile,
Water Resour. Res., 52, 5075–5094, https://doi.org/10.1002/2015WR018250, 2016.
Manville, V., Németh, K., and Kano, K.: Source to sink: A review of three
decades of progress in the understanding of volcaniclastic processes,
deposits, and hazards, Sediment. Geol., 220, 136–161,
https://doi.org/10.1016/j.sedgeo.2009.04.022, 2009.
Marc, O., Behling, R., Andermann, C., Turowski, J. M., Illien, L., Roessner, S., and Hovius, N.: Long-term erosion of the Nepal Himalayas by bedrock landsliding: the role of monsoons, earthquakes and giant landslides, Earth Surf. Dynam., 7, 107–128, https://doi.org/10.5194/esurf-7-107-2019, 2019.
Martin Del Pozzo, A. L., Alatorre Ibargüengoitia, M., Arana Salinas, L.,
Bonasia, R., Capra Pedol, L., Cassata, W., Córdoba, G., Cortés
Ramos, J., Delgado Granados, H., Ferrés López, M. D., R., F. Á.,
García Reynoso, J. A., Gisbert, G., Guerrero López, D. A., Jaimes
Viera, M. C., Macías Vázquez, J. L., Nieto Obregón, J., Nieto
Torres, A., Paredes Ruiz, P. A., Portocarrero Martínez, J., Renne, P.,
Rodríguez Espinosa, D. M., Salinas Sánchez, S., Siebe Grabach, C., and Tellez Ugalde, E.: Estudios geológicos y actualización del mapa
de peligros del volcán Popocatépetl, Monografías Instituto de
Geofísica, UNAM, Ciudad de México, México, 2017.
Mcguire, W. J.: Volcano instability: A review of contemporary themes, Geol.
Soc. Spec. Publ., 110, 1–23, https://doi.org/10.1144/GSL.SP.1996.110.01.01, 1996.
Melgar, D., Pérez-Campos, X., Ramirez-Guzman, L., Spica, Z.,
Espíndola, V. H., Hammond, W. C., and Cabral-Cano, E.: Bend Faulting at
the Edge of a Flat Slab: The 2017 Mw 7.1 Puebla-Morelos, Mexico Earthquake,
Geophys. Res. Lett., 45, 2633–2641, https://doi.org/10.1002/2017GL076895, 2018.
Meunier, P., Hovius, N., and Haines, J. A.: Topographic site effects and the
location of earthquake induced landslides, Earth Planet. Sci. Lett.,
275, 221–232, https://doi.org/10.1016/j.epsl.2008.07.020, 2008.
Mondini, A. C.: Measures of spatial autocorrelation changes in multitemporal
SAR images for event landslides detection, Remote Sens., 9, 554,
https://doi.org/10.3390/rs9060554, 2017.
Norini, G., Groppelli, G., Lagmay, A. M. F., and Capra, L.: Recent
left-oblique slip faulting in the central eastern Trans-Mexican Volcanic
Belt: Seismic hazard and geodynamic implications, Tectonics, 25, 1–21,
https://doi.org/10.1029/2005TC001877, 2006.
Norini, G., Capra, L., Groppelli, G., and Lagmay, A. M. F.: Quaternary sector
collapses of Nevado de Toluca volcano (Mexico) governed by regional
tectonics and volcanic evolution, Geosphere, 4, 854–871,
https://doi.org/10.1130/GES00165.1, 2008.
Norini, G., Carrasco-Núñez, G., Corbo-Camargo, F., Lermo, J., Rojas,
J. H., Castro, C., Bonini, M., Montanari, D., Corti, G., Moratti, G.,
Piccardi, L., Chavez, G., Zuluaga, M. C., Ramirez, M., and Cedillo, F.: The
structural architecture of the Los Humeros volcanic complex and geothermal
field, J. Volcanol. Geotherm. Res., 381, 312–329,
https://doi.org/10.1016/j.jvolgeores.2019.06.010, 2019.
Pasquaré, G., Vezzoli, L., and Zanchi, A.: Morphological and structural
model of Mexican Volcanic Belt, Geofísica Int., 26, 159–175, 1987.
Pearce, A. J. and Watson, A. J.: Effects of earthquake-induced landslides on
sediment budget and transport over 50-yr period, Geology, 14, 52–55, 1986.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., Van Der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age
Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757,
https://doi.org/10.1017/RDC.2020.41, 2020.
Roberti, G., Friele, P., van Wyk de Vries, B., Ward, B., Clague, J. J.,
Perotti, L., and Giardino, M.: Rheological evolution of the Mount Meager 2010
debris avalanche, southwestern British Columbia, Geosphere, 13, 1–22,
https://doi.org/10.1130/GES01389.1, 2017.
Roverato, M., Cronin, S., Procter, J., and Capra, L.: Textural features as
indicators of debris avalanche transport and emplacement, Taranaki volcano,
Bull. Geol. Soc. Am., 127, 3–18, https://doi.org/10.1130/B30946.1, 2015.
RUOA-UNAM: Observatorio Atmosférico Altzomoni, available at: https://www.ruoa.unam.mx/index.php?page=estaciones&id=2, last access: 1 April 2021.
Sassa, K.: Landslide disasters triggered by the 2004 Mid-Niigata Prefecture
earthquake in Japan, Landslides, 2, 135–142,
https://doi.org/10.1007/s10346-005-0054-4, 2005.
Sato, H. P., Hasegawa, H., Fujiwara, S., Tobita, M., Koarai, M., Une, H., and
Iwahashi, J.: Interpretation of landslide distribution triggered by the 2005
Northern Pakistan earthquake using SPOT 5 imagery, Landslides, 4,
113–122, https://doi.org/10.1007/s10346-006-0069-5, 2007.
Schulz, W. H., Galloway, S. L., and Higgins, J. D.: Evidence for earthquake
triggering of large landslides in coastal Oregon, USA, Geomorphology,
141–142, 88–98, https://doi.org/10.1016/j.geomorph.2011.12.026, 2012.
Schuster, R. L., Nieto, A. S., O'Rourke, T. D., Crespo, E., and Plaza-Nieto,
G.: Mass wasting triggered by the 5 March 1987 Ecuador earthquakes, Eng.
Geol., 42, 1–23, https://doi.org/10.1016/0013-7952(95)00024-0, 1996.
Scott, K. M., Macias, J. L., Naranj, J. A., Rodriguez, S., and McGeehin, J.
P.: Catastrophic debris flows transformed from landslides in volcanic
terrains: mobility, hazard assessment and mitigation strategies, USGS
Professional Paper 1630, US Department of the Interior, US Geological Survey, 2001.
Serey, A., Piñero-Feliciangeli, L., Sepúlveda, S. A., Poblete, F.,
Petley, D. N., and Murphy, W.: Landslides induced by the 2010 Chile
megathrust earthquake: a comprehensive inventory and correlations with
geological and seismic factors, Landslides, 16, 1153–1165,
https://doi.org/10.1007/s10346-019-01150-6, 2019.
Shapiro, N. M., Singh, S. K., Iglesias-Mendoza, A., Cruz-Atienza, V. M., and
Pacheco, J. F.: Evidence of low Q below Popocatpetl volcano, and its
implication to seismic hazard in Mexico City, Geophys. Res. Lett., 27,
2753–2756, https://doi.org/10.1029/1999GL011232, 2000.
Siebe, C. and Macías, J. L.: Volcanic hazards in the Mexico City
metropolitan area from eruptions at Popocatépetl, Nevado de Toluca, and
Jocotitlán stratovolcanoes and monogenetic scoria cones in the Sierra
Chichinautzin Volcanic Field, Geological Society of America, Boulder, Colorado, USA, 77 pp., 2006.
Siebe, C., Abrams, M., Macías, J. L., and Obenholzner, J.: Repeated
volcanic disasters in Prehispanic time at Popocatépetl, central Mexico:
Past key to the future?, Geology, 24, 399–402,
https://doi.org/10.1130/0091-7613(1996)024<0399:RVDIPT>2.3.CO;2,
1996.
Siebe, C., Salinas, S., Arana-Salinas, L., Macías, J. L., Gardner, J., and Bonasia, R.: The ∼ 23,500 y 14C BP White Pumice Plinian
eruption and associated debris avalanche and Tochimilco lava flow of
Popocatépetl volcano, México, J. Volcanol. Geotherm. Res., 333–334,
66–95, https://doi.org/10.1016/j.jvolgeores.2017.01.011, 2017.
Siebert, L.: Landslides resulting from structural failure of volcanoes, Rev.
Eng. Geol., 15, 209–235, https://doi.org/10.1130/REG15-p209, 2002.
Singh, A.: Review article digital change detection techniques using
remotely-sensed data, Int. J. Remote Sens., 10, 689–1003,
https://doi.org/10.1007/BF02197115, 1989.
Singh, S. K., Reinoso, E., Arroyo, D., Ordaz, M., Cruz-Atienza, V.,
Pérez-Campos, X., Iglesias, A., and Hjörleifsdóttir, V.: Deadly
Intraslab Mexico Earthquake of 19 September 2017 (Mw 7.1): Ground Motion and
Damage Pattern in Mexico City, Seismol. Res. Lett., 89, 2193–2203,
https://doi.org/10.1785/0220180159, 2018.
Tanarro, L. M., Andrés, N., Zamorano, J. J., Palacios, D., and Renschler,
C. S.: Geomorphological evolution of a fluvial channel after primary lahar
deposition: Huiloac Gorge, Popocatépetl volcano (Mexico), Geomorphology,
122, 178–190, https://doi.org/10.1016/j.geomorph.2010.06.013, 2010.
Vázquez-Selem, L. and Heine, K.: Late Quaternary Glaciation in Mexico,
Developments in Quaternary Science, 15, 849–861, 2011.
von Specht, S., Ozturk, U., Veh, G., Cotton, F., and Korup, O.: Effects of finite source rupture on landslide triggering: the 2016 Mw 7.1 Kumamoto earthquake, Solid Earth, 10, 463–486, https://doi.org/10.5194/se-10-463-2019, 2019.
Wang, F., Fan, X., Yunus, A. P., Siva Subramanian, S., Alonso-Rodriguez, A.,
Dai, L., Xu, Q., and Huang, R.: Coseismic landslides triggered by the 2018
Hokkaido, Japan (Mw 6.6), earthquake: spatial distribution, controlling
factors, and possible failure mechanism, Landslides, 16, 1551–1566,
https://doi.org/10.1007/s10346-019-01187-7, 2019.
Wartman, J., Dunham, L., Tiwari, B., and Pradel, D.: Landslides in eastern
Honshu induced by the 2011 Off the Pacific Coast of Tohoku earthquake, Bull.
Seismol. Soc. Am., 103, 1503–1521, https://doi.org/10.1785/0120120128, 2013.
Worden, C. B., Wald, D. J., Allen, T. I., Lin, K., Garcia, D., and Cua, G.: A revised ground-motion and intensity interpolation scheme for ShakeMap, B. Seismol. Soc. Am., 100, 3083–3096, https://doi.org/10.1785/0120100101, 2010 (data available at: https://earthquake.usgs.gov/earthquakes/eventpage/us2000ar20/shakemap/pga, last access: 1 February 2021).
Xu, C. and Xu, X.: Statistical analysis of landslides caused by the Mw 6.9
Yushu, China, earthquake of April 14, 2010, Nat. Hazards, 72, 871–893,
https://doi.org/10.1007/s11069-014-1038-2, 2014.
Zaragoza-Campillo, G., Caballaero, L., Capra, L., and Nieto, A.: Origen, características y peligros asociados a lahares secundarios en el volcán Popocatépetl: el caso del lahar Nexpayantla, Revista Mexicana de Ciencias Geolologicas, 37, 121–134, https://doi.org/10.22201/cgeo.20072902e.2020.2.1565, 2020.
Short summary
The Puebla–Morelos earthquake (19 September 2017) was the most damaging event in central Mexico since 1985. The seismic shaking produced hundreds of shallow landslides on the slopes of Popocatépetl Volcano. The larger landslides transformed into large debris flows that travelled for kilometers. We describe this exceptional mass wasting cascade and its predisposing factors, which have important implications for both the evolution of the volcanic edifice and hazard assessment.
The Puebla–Morelos earthquake (19 September 2017) was the most damaging event in central Mexico...