Articles | Volume 9, issue 3
https://doi.org/10.5194/esurf-9-665-2021
https://doi.org/10.5194/esurf-9-665-2021
Short communication
 | 
23 Jun 2021
Short communication |  | 23 Jun 2021

Short communication: Runout of rock avalanches limited by basal friction but controlled by fragmentation

Øystein T. Haug, Matthias Rosenau, Michael Rudolf, Karen Leever, and Onno Oncken

Related authors

Time-dependent frictional properties of granular materials used in analogue modelling: implications for mimicking fault healing during reactivation and inversion
Michael Rudolf, Matthias Rosenau, and Onno Oncken
Solid Earth, 14, 311–331, https://doi.org/10.5194/se-14-311-2023,https://doi.org/10.5194/se-14-311-2023, 2023
Short summary
Analogue modelling of basin inversion: a review and future perspectives
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022,https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Using a calibrated upper living position of marine biota to calculate coseismic uplift: a case study of the 2016 Kaikōura earthquake, New Zealand
Catherine Reid, John Begg, Vasiliki Mouslopoulou, Onno Oncken, Andrew Nicol, and Sofia-Katerina Kufner
Earth Surf. Dynam., 8, 351–366, https://doi.org/10.5194/esurf-8-351-2020,https://doi.org/10.5194/esurf-8-351-2020, 2020
Overprinting translational domains in passive margin salt basins: insights from analogue modelling
Zhiyuan Ge, Matthias Rosenau, Michael Warsitzka, and Rob L. Gawthorpe
Solid Earth, 10, 1283–1300, https://doi.org/10.5194/se-10-1283-2019,https://doi.org/10.5194/se-10-1283-2019, 2019
Short summary
Distinct phases of eustatic and tectonic forcing for late Quaternary landscape evolution in southwest Crete, Greece
Vasiliki Mouslopoulou, John Begg, Alexander Fülling, Daniel Moraetis, Panagiotis Partsinevelos, and Onno Oncken
Earth Surf. Dynam., 5, 511–527, https://doi.org/10.5194/esurf-5-511-2017,https://doi.org/10.5194/esurf-5-511-2017, 2017
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Terrace formation linked to outburst floods at the Diexi palaeo-landslide dam, upper Minjiang River, eastern Tibetan Plateau
Jingjuan Li, John D. Jansen, Xuanmei Fan, Zhiyong Ding, Shugang Kang, and Marco Lovati
Earth Surf. Dynam., 12, 953–971, https://doi.org/10.5194/esurf-12-953-2024,https://doi.org/10.5194/esurf-12-953-2024, 2024
Short summary
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024,https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024,https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Role of the forcing sources in morphodynamic modelling of an embayed beach
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024,https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024,https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary

Cited articles

Bowman, E. T., Take, W. A., Rait, K. L., and Hann, C.: Physical models of rock avalanche spreading behaviour with dynamic fragmentation, Can. Geotech. J., 49, 460–476, https://doi.org/10.1139/t2012-007, 2012. a, b, c
Campbell, C. S.: Self-lubrication for long runout landslides, J. Geol., 97, 653–665, 1989. a, b
Davies, T. R. and McSaveney, M. J.: Runout of dry granular avalanches, Can. Geotech. J., 36, 313–320, https://doi.org/10.1139/t98-108, 1999. a
De Blasio, F. V. and Crosta, G. B.: Fragmentation and boosting of rock falls and rock avalanches, Geophys. Res. Lett., 42, 8463–8470, https://doi.org/10.1002/2015GL064723, 2015. a, b, c
Gao, G., Meguid, M. A., Chouinard, L. E., and Zhan, W.: Dynamic disintegration processes accompanying transport of an earthquake-induced landslide, Landslides, 18, 1612–5118, https://doi.org/10.1007/s10346-020-01508-1, 2020. a
Download
Short summary
The runout of rock avalanches scales with their volume but also shows a considerable variation for avalanches with similar volumes. Here we show that besides size-dependent weakening mechanisms, fragmentation can account for the observed variability in runout. We use laboratory-scale experimental avalanches to simulate and analyse the role of fragmentation. We find that fragmentation consumes energy but also increases avalanche mobility. It does so systematically and predictably.