Articles | Volume 11, issue 2
https://doi.org/10.5194/esurf-11-203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of the morphodynamics on Little Ice Age lateral moraines in 10 glacier forefields of the Eastern Alps since the 1950s
Sarah Betz-Nutz
CORRESPONDING AUTHOR
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Tobias Heckmann
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Florian Haas
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Michael Becht
Physical Geography, Catholic University of Eichstätt-Ingolstadt,
85072 Eichstätt, Germany
Related authors
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Livia Piermattei, Tobias Heckmann, Sarah Betz-Nutz, Moritz Altmann, Jakob Rom, Fabian Fleischer, Manuel Stark, Florian Haas, Camillo Ressl, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, https://doi.org/10.5194/esurf-11-383-2023, 2023
Short summary
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023, https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Short summary
In this study, an area-wide slope-type debris flow record has been established for Horlachtal, Austria, since 1947 based on historical and recent remote sensing data. Spatial and temporal analyses show variations in debris flow activity in space and time in a high-alpine region. The results can contribute to a better understanding of past slope-type debris flow dynamics in the context of extreme precipitation events and their possible future development.
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Livia Piermattei, Tobias Heckmann, Sarah Betz-Nutz, Moritz Altmann, Jakob Rom, Fabian Fleischer, Manuel Stark, Florian Haas, Camillo Ressl, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, https://doi.org/10.5194/esurf-11-383-2023, 2023
Short summary
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023, https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Short summary
In this study, an area-wide slope-type debris flow record has been established for Horlachtal, Austria, since 1947 based on historical and recent remote sensing data. Spatial and temporal analyses show variations in debris flow activity in space and time in a high-alpine region. The results can contribute to a better understanding of past slope-type debris flow dynamics in the context of extreme precipitation events and their possible future development.
Fabian Fleischer, Florian Haas, Livia Piermattei, Madlene Pfeiffer, Tobias Heckmann, Moritz Altmann, Jakob Rom, Manuel Stark, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
The Cryosphere, 15, 5345–5369, https://doi.org/10.5194/tc-15-5345-2021, https://doi.org/10.5194/tc-15-5345-2021, 2021
Short summary
Short summary
We investigate the long-term (1953–2017) morphodynamic changes in rock glaciers in Kaunertal valley, Austria. Using a combination of historical aerial photographs and laser scanning data, we derive information on flow velocities and surface elevation changes. We observe a loss of volume and an acceleration from the late 1990s onwards. We explain this by changes in the meteorological forcing. Individual rock glaciers react to these changes to varying degrees.
Kerstin Wegner, Florian Haas, Tobias Heckmann, Anne Mangeney, Virginie Durand, Nicolas Villeneuve, Philippe Kowalski, Aline Peltier, and Michael Becht
Nat. Hazards Earth Syst. Sci., 21, 1159–1177, https://doi.org/10.5194/nhess-21-1159-2021, https://doi.org/10.5194/nhess-21-1159-2021, 2021
Short summary
Short summary
In mountainous regions rockfall is a common geomorphic process. We selected four study sites that feature different rock types. High-resolution terrestrial laser scanning data were acquired to measure the block size and block shape (axial ratio) of rockfall particles on the scree deposits. Laser scanning data were also used to characterize the morphology of these landforms. Our results show that hill slope and rock particle properties govern rock particle runout in a complex manner.
Cited articles
Aber, J. S., Marzolff, I., Ries, J. B., and Aber, S. E. W.: Small-Format
Aerial Photography and UAS imagery. Principles, Techniques, and Geoscience
Applications, Elsevier, Amsterdam, Oxford, Cambridge, MA,
https://doi.org/10.1016/C2016-0-03506-4, 2019.
Abermann, J., Fischer, A., Lambrecht, A., and Geist, T.: On the potential of
very high-resolution repeat DEMs in glacial and periglacial environments, The Cryosphere, 4, 53–65, https://doi.org/10.5194/tc-4-53-2010, 2010.
Altmann, M., Piermattei, L., Haas, F., Heckmann, T., Fleischer, F., Rom, J.,
Betz-Nutz, S., Knoflach, B., Müller, S., Ramskogler, K., Pfeiffer, M.,
Hofmeister, F., Ressl, C., and Becht, M.: Long-Term Changes of Morphodynamics on Little Ice Age Lateral Moraines and the Resulting Sediment Transfer into Mountain Streams in the Upper Kauner Valley, Austria, Water, 12, 3375, https://doi.org/10.3390/w12123375, 2020.
Anderson, S. W.: Uncertainty in quantitative analyses of topographic change:
error propagation and the role of thresholding, Earth Surf. Proc. Land., 44, 1015–1033, https://doi.org/10.1002/esp.4551, 2019.
Autonomous Province Bolzano-South Tyrol: LiDAR-Erhebung CGR 2004-06 [data set], http://geokatalog.buergernetz.bz.it/geokatalog (last access: 21 March 2023), 2007.
Bakker, M. and Lane, S. N.: Archival photogrammetric analysis of river–floodplain systems using Structure from Motion (SfM) methods, Earth
Surf. Proc. Land., 42, 1274–1286, https://doi.org/10.1002/esp.4085, 2017.
Ballantyne, C. K.: A general model of paraglacial landscape response, Holocene, 12, 371–376, https://doi.org/10.1191/0959683602hl553fa, 2002a.
Ballantyne, C. K.: Paraglacial geomorphology, Quaternary Sci. Rev., 21,
1935–2017, https://doi.org/10.1016/S0277-3791(02)00005-7, 2002b.
Ballantyne, C. K. and Benn, D. I.: Paraglacial Slope Adjustment and
Resedimentation Following Recent Glacier Retreat, Fåbergstølsdalen,
Norway, Arct. Alp. Res., 26, 255–269, https://doi.org/10.2307/1551938, 1994.
Ballantyne, C. K. and Benn, D. I.: Paraglacial slope adjustment during
recent deglaciation and its implications for slope evolution in formerly
glaciated environments, in: Advances in hillslope processes, edited by:
Anderson, M. G. and Brooks, S. M., Wiley, Chichester, 1173–1195, ISBN 0-471-96774-2, 1996.
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation, Hodder Education, London, 820 pp., ISBN 978-0-340-90579-1, 2010.
Betz, S., Croce, V., and Becht, M.: Investigating morphodynamics on Little Ice Age lateral moraines in the Italian Alps using archival aerial photogrammetry and airborne LiDAR data, Z. Geomorphol., 62, 231–247,
https://doi.org/10.1127/zfg/2019/0629, 2019.
Betz-Nutz, S.: Vergleichende photogrammetrische Untersuchungen zu langfristigen Veränderungen der Morphodynamik auf neuzeitlichen Lateralmoränen ausgewählter Alpengletscher, PhD thesis, Catholic
University of Eichstaett-Ingolstadt, Eichstaett, Germany,
https://doi.org/10.17904/ku.opus-698, 2021.
Blair, R. W.: Moraine and Valley Wall Collapse due to Rapid Deglaciation in
Mount Cook National Park, New Zealand, Mt. Res. Dev., 14, 347–358,
https://doi.org/10.2307/3673731, 1994.
Carrivick, J. L., Smith, M. W., and Quincey, D. J.: Structure from Motion in
the Geosciences, Wiley, Chichester, 208 pp., https://doi.org/10.1002/9781118895818, 2016.
Carton, A. and Baroni, C.: The Adamello-Presanella and Brenta Massifs, Central Alps: Contrasting High-Mountain Landscapes and Landforms, in:
Landscapes and Landforms of Italy, edited by: Soldati, M. and Marchetti, M.,
Springer International Publishing, Cham, Switzerland,
https://doi.org/10.1007/978-3-319-26194-2, 2017.
Chiarle, M., Iannotti, S., Mortara, G., and Deline, P.: Recent debris flow
occurrences associated with glaciers in the Alps, Global Planet. Change, 56,
123–136, https://doi.org/10.1016/j.gloplacha.2006.07.003, 2007.
Church, M. and Ryder, J. M.: Paraglacial Sedimentation: A Consideration of
Fluvial Processes Conditioned by Glaciation, GSA Bull., 83, 3059–3072,
https://doi.org/10.1130/0016-7606(1972)83[3059:PSACOF]2.0.CO;2, 1972.
Cody, E., Anderson, B. M., McColl, S. T., Fuller, I. C., and Purdie, H. L.:
Paraglacial adjustment of sediment slopes during and immediately after glacial debuttressing, Geomorphology, 371, 107411, https://doi.org/10.1016/j.geomorph.2020.107411, 2020.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L.,
Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007,
https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020.
Curry, A. M.: Paraglacial modification of slope form, Earth Surf. Proc. Land., 24, 1213–1228, https://doi.org/10.1002/(SICI)1096-9837(199912)24:13<1213::AID-ESP32>3.0.CO;2-B, 1999.
Curry, A. M., Cleasby, V., and Zukowskyj, P.: Paraglacial response of steep,
sediment-mantled slopes to post-`Little Ice Age' glacier recession in the
central Swiss Alps, J. Quatern. Sci., 21, 211–225, https://doi.org/10.1002/jqs.954, 2006.
Curry, A. M., Sands, T. B., and Porter, P. R.: Geotechnical controls on a
steep lateral moraine undergoing paraglacial slope adjustment, Geol. Soc. Lond. Spec. Publ., 320, 181–197, https://doi.org/10.1144/SP320.12, 2009.
Damgaard, C.: A Critique of the Space-for-Time Substitution Practice in Community Ecology, Trends Ecol. Evol., 34, 416–421, https://doi.org/10.1016/j.tree.2019.01.013, 2019.
Dusik, J.-M.: Die aktuelle Geomorphodynamik auf proglazialen Moränen im
Hinteren Kaunertal: hochaufgelöste Messung und Modellierung der
Prozessdynamik hinsichtlich ihrer lokalen und temporalen Variabilität,
PhD thesis, Catholic University of Eichstaett-Ingolstadt, Eichstaett,
Germany, https://opus4.kobv.de/opus4-ku-eichstaett/frontdoor/index/index/docId/590 (last access: 21 March 2023), 2020.
Dusik, J.-M., Neugirg, F., and Haas, F.: Slope wash, gully erosion and debris flows on lateral moraines in the Upper Kaunertal, Austria, in: Geomorphology of Proglacial Systems: Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes, edited by: Heckmann, T. and Morche, D., Springer International Publishing, Cham, Switzerland, 177–196, https://doi.org/10.1007/978-3-319-94184-4, 2019.
Eichel, J., Corenblit, D., and Dikau, R.: Conditions for feedbacks between
geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window, Earth Surf. Proce. Land., 41, 406–419, https://doi.org/10.1002/esp.3859, 2016.
Eichel, J., Draebing, D., and Meyer, N.: From active to stable: Paraglacial
transition of Alpine lateral moraine slopes, Land Degrad. Dev., 29,
4158–4172, https://doi.org/10.1002/ldr.3140, 2018.
Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., and Abellán, A.: Image-based surface reconstruction in geomorphometry – merits, limits and developments, Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, 2016.
Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann,
J.: Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015, 2015.
Haeberli, W. and Beniston, M.: Climate Change and Its Impacts on Glaciers and Permafrost in the Alps, Ambio, 27, 258–265, 1998.
Hambrey, M. J.: Glacial Environments, UBC Press, Vancouver, ISBN 0-7748-0509-9, ISBN 0-7748-0510-2, 1994.
Heckmann, T., Haas, F., Morche, D., Schmidt, K.-H., Rohn, J., Moser, M., Leopold, M., Kuhn, M., Briese, C., Pfeifer, N., and Becht, M.: Investigating
an Alpine proglacial sediment budget using field measurements, airborne and
terrestrial LiDAR data, IAHS Publ., 356, 438–447, 2012.
Hugenholtz, C. H., Moorman, B. J., Barlow, J., and Wainstein, P. A.:
Large-scale moraine deformation at the Athabasca Glacier, Jasper National Park, Alberta, Canada, Landslides, 5, 251–260, https://doi.org/10.1007/s10346-008-0116-5, 2008.
Jäger, D. and Winkler, S.: Paraglacial processes on the glacier foreland
of Vernagtferner (Ötztal Alps, Austria), Z. Geomorphol., 56, 95–113,
https://doi.org/10.1127/0372-8854/2012/S-00099, 2012.
James, M. R., Chandler, J. H., Eltner, A., Fraser, C., Miller, P. E., Mills,
J. P., Noble, T., Robson, S., and Lane, S. N.: Guidelines on the use of
structure-from-motion photogrammetry in geomorphic research, Earth Surf. Proc. Land., 44, 2081–2084, https://doi.org/10.1002/esp.4637, 2019.
Kilian, W., Müller, F., and Starlinger, F.: Die forstlichen Wuchsgebiete
Österreichs. Eine Naturraumgliederung nach waldökologischen
Gesichtspunkten, FBVA-Berichte FDK:182.3:188:(436), 82, Forstliche Bundesversuchsanstalt, Waldforschungszentrum, Wien, ISSN 0374-9037, 1994.
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., and Saugy, J.-N.:
Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession,
Geomorphology, 277, 210–227, https://doi.org/10.1016/j.geomorph.2016.02.015, 2017.
Lukas, S.: Ice-Cored Moraines, in: Encyclopedia of Snow, Ice and Glaciers,
edited by: Singh, V. P., Singh, P., and Haritashya, U. K., Springer Netherlands, Dordrecht, 616–619, https://doi.org/10.1007/978-90-481-2642-2_666, 2011.
Lukas, S., Graf, A., Coray, S., and Schlüchter, C.: Genesis, stability
and preservation potential of large lateral moraines of Alpine valley glaciers – towards a unifying theory based on Findelengletscher, Switzerland, Quaternary Sci. Rev., 38, 27–48, https://doi.org/10.1016/j.quascirev.2012.01.022, 2012.
Mair, V., Nocker, C., and Tropper, P.: Das Ortler-Campo Kristallin in
Südtirol, Mitt. Österr. Miner. Ges., 153, 219–240, 2007.
Mayr, A., Rutzinger, M., and Geitner, C.: Multitemporal Analysis of Objects
in 3D Point Clouds for Landslide Monitoring, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 691–697, https://doi.org/10.5194/isprs-archives-XLII-2-691-2018, 2018.
Meschede, M.: Geologie Deutschlands: Ein prozessorientierter Ansatz, in: 2nd Edn., Springer Spektrum, Berlin, https://doi.org/10.1007/978-3-662-45298-1, 2018.
Micheletti, N., Lane, S. N., and Chandler, J. H.: Application of archival
aerial photogrammetry to quantify climate forcing of alpine landscapes, Photogram. Rec., 30, 143–165, https://doi.org/10.1111/phor.12099, 2015a.
Micheletti, N., Lambiel, C., and Lane, S. N.: Investigating decadal-scale
geomorphic dynamics in an alpine mountain setting, J. Geophys. Res.-Earth, 120, 2155–2175, https://doi.org/10.1002/2015JF003656, 2015b.
Mortara, G. and Chiarle, M.: Instability of recent moraines in the Italian
Alps. Effects of natural processes and human intervention having environmental and hazard implications, G. Geol. Appl., 1, 139–146,
https://www.aigaa.org/public/GGA.2005-01.0-14.0014.pdf (last access: 21 March 2023), 2005.
Neugirg, F.: Quantifizierung, Analyse und Modellierung von Erosionsprozessen
auf Steilhängen in unterschiedlichen Klimaten durch hochaufgelöste
Geländemodelle, PhD thesis, Catholic University of Eichstaett-Ingolstadt, Eichstaett, Germany, 2016.
Pindur, P. and Luzian, R.: Der “Obere Zemmgrund” – Ein geographischer
Einblick, BFW-Berichte, 141, 23–35, 2007.
Platz, E. and Rothpletz, A.: Alpine Majestäten und ihr Gefolge. Die
Gebirgswelt der Erde in Bildern, in: Band 3, Vereinigte Kunstanstalten A.G.,
München, Faksimile Reprint in Fines Mundi 2019, München, 1903.
Ravanel, L., Duvillard, P.-A., Jaboyedoff, M., and Lambiel, C.: Recent evolution of an ice-cored moraine at the Gentianes Pass, Valais Alps, Switzerland, Land Degrad. Dev., 29, 3693–3708, https://doi.org/10.1002/ldr.3088, 2018.
Sailer, R., Bollmann, E., Hoinkes, S., Rieg, L., Sproß, M., and Stötter, J.: Quantification of Geomorphodynamics in Glaciated and
Recently Deglaciated Terrain Based on Airborne Laser Scanning Data, Geogr.
Ann. A, 94, 17–32, https://doi.org/10.1111/j.1468-0459.2012.00456.x, 2012.
Schiefer, E. and Gilbert, R.: Reconstructing morphometric change in a proglacial landscape using historical aerial photography and automated DEM
generation, Geomorphology, 88, 167–178, https://doi.org/10.1016/j.geomorph.2006.11.003, 2007.
Schomacker, A.: What controls dead-ice melting under different climate
conditions? A discussion, Earth Sci. Rev., 90, 103–113,
https://doi.org/10.1016/j.earscirev.2008.08.003, 2008.
Schumann, K., Gewolf, S., and Tackenberg, O.: Factors affecting primary succession of glacier foreland vegetation in the European Alps, Alp. Bot., 126, 105–117, https://doi.org/10.1007/s00035-016-0166-6, 2016.
Smith, M. W. and Vericat, D.: From experimental plots to experimental landscapes: topography, erosion and deposition in sub-humid badlands from
Structure-from-Motion photogrammetry, Earth Surf. Proc. Land., 40, 1656–1671, https://doi.org/10.1002/esp.3747, 2015.
Smith, M. W., Carrivick, J. L., and Quincey, D. J.: Structure from motion
photogrammetry in physical geography, Prog. Phys. Geogr., 40, 247–275,
https://doi.org/10.1177/0309133315615805, 2016.
Stark, M., Neugirg, F., Kaiser, A., Seta, M. D., Schmidt, J., Becht, M., and
Haas, F.: Calanchi badlands reconstructions and long-term change detection
analysis from historical aerial and UAS image processing, J. Geomorphol., 1, 1–24, https://doi.org/10.1127/jgeomorphology/2020/0658, 2020.
Veit, H.: Die Alpen – Geoökologie und Landschaftsentwicklung, Ulmer,
Stuttgart, ISBN 3-8252-2327-2, ISBN 3-8001-2788-1, 2002.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.: `Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, 179, 300–314,
https://doi.org/10.1016/j.geomorph.2012.08.021, 2012.
Wetzel, K.-F.: Abtragsprozesse an Hängen und Feststoffführung der
Gewässer. Dargestellt am Beispiel der pleistozänen Lockergesteine
des Lainbachgebietes (Benediktbeuern/Obb.), Münchener Geographische
Abhandlungen, B17, 1–176, 1992.
Wojcik, R., Eichel, J., Bradley, J. A., and Benning, L. G.: How allogenic
factors affect succession in glacier forefields, Earth Sci. Rev., 218, 103642, https://doi.org/10.1016/j.earscirev.2021.103642, 2021.
Zemp, M., Paul, F., Hoelzle, M., and Haeberli, W.: Glacier fluctuations in
the European Alps, 1850–2000: an overview and spatio-temporal analysis of
available data, in: Darkening Peaks: Glacier Retreat, Science, and Society,
edited by: Orlove, B., Wiegand, E., and Luckman, B. H., University of
California Press, Berkeley, 152–167, https://doi.org/10.5167/uzh-9024, 2008.
ZAMG – Zentralanstalt für Meteorologie und Geodynamik, ARPAV – Autonomous Province of Bolzano-South Tyrol, Dipartimento Regionale per la Sicurezza del Territorio, Land Tirol, and Wildbach- und Lawinenverbauung Tirol: 3PClim-project, ZAMG [data set], http://www.alpenklima.eu/tpclim/klima.php?lang=de (last access: 21 March 2023), 2015.
Short summary
The geomorphic activity of LIA lateral moraines is of high interest due to its implications for the sediment fluxes and hazards within proglacial areas. We derived multitemporal models from historical aerial images and recent drone images to investigate the morphodynamics on moraine slopes over time. We found that the highest erosion rates occur on the steepest moraine slopes, which stay active for decades, and that the slope angle explains morphodynamics better than the time since deglaciation.
The geomorphic activity of LIA lateral moraines is of high interest due to its implications for...