Research article
06 Aug 2019
Research article
| 06 Aug 2019
Displacement mechanisms of slow-moving landslides in response to changes in porewater pressure and dynamic stress
Jonathan M. Carey et al.
Related authors
No articles found.
Saskia de Vilder, Chris Massey, Biljana Lukovic, Tony Taig, and Regine Morgenstern
Nat. Hazards Earth Syst. Sci., 22, 2289–2316, https://doi.org/10.5194/nhess-22-2289-2022, https://doi.org/10.5194/nhess-22-2289-2022, 2022
Short summary
Short summary
This study calculates the fatality risk posed by landslides while visiting Franz Josef Glacier and Fox Glacier valleys, New Zealand, for nine different scenarios, where the variables of the risk equation were adjusted to determine the range in risk values and associated uncertainty. The results show that it is important to consider variable inputs that change through time, such as the increasing probability of an earthquake and the impact of climate change on landslide characteristics.
Mark C. Quigley, Wendy Saunders, Chris Massey, Russ Van Dissen, Pilar Villamor, Helen Jack, and Nicola Litchfield
Nat. Hazards Earth Syst. Sci., 20, 3361–3385, https://doi.org/10.5194/nhess-20-3361-2020, https://doi.org/10.5194/nhess-20-3361-2020, 2020
Short summary
Short summary
This paper examines the roles of earth science information (data, knowledge, advice) in land-use decision-making in Christchurch, New Zealand, in response to the 2010–2011 Canterbury earthquake sequence. A detailed timeline of scientific activities and information provisions relative to key decision-making events is provided. We highlight the importance and challenges of the effective provision of science to decision makers in times of crisis.
Louise Mary Vick, Valerie Zimmer, Christopher White, Chris Massey, and Tim Davies
Nat. Hazards Earth Syst. Sci., 19, 1105–1117, https://doi.org/10.5194/nhess-19-1105-2019, https://doi.org/10.5194/nhess-19-1105-2019, 2019
Short summary
Short summary
Rockfall boulders can travel long distances downslope, and it is important to predict how far fatalities can be prevented. A comparison of earthquake data from New Zealand during summer and full-scale rockfall experiments in the same soil during winter shows that during dry seasons boulders travel further downslope because the soil is harder. When using predictive tools, engineers and geologists should take soil conditions (and seasonal variations thereof) into account.
Melanie J. Froude and David N. Petley
Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, https://doi.org/10.5194/nhess-18-2161-2018, 2018
Short summary
Short summary
Landslides are a hazard in terrestrial environments with slopes. This paper presents global analysis on patterns of fatal landsliding between 2004 and 2016, using a database collated from media reporting. The data show ~ 56 000 people were killed in 4862 landslide events. Active landslide years coincide with patterns of regional rainfall: most landslides were rainfall triggered. For the first time, analysis shows the number of landslides triggered by human activity increased with time.
R. N. Parker, G. T. Hancox, D. N. Petley, C. I. Massey, A. L. Densmore, and N. J. Rosser
Earth Surf. Dynam., 3, 501–525, https://doi.org/10.5194/esurf-3-501-2015, https://doi.org/10.5194/esurf-3-501-2015, 2015
Short summary
Short summary
Large earthquakes commonly trigger widespread and destructive landsliding. This paper tests the hypothesis that spatial distributions of earthquake-induced landslides are determined by both the conditions at the time of the triggering earthquake and the legacy of past events. Our findings emphasise that a lack of understanding of the legacy of damage in hillslopes potentially represents an important source of uncertainty when assessing regional landslide susceptibility.
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Theoretical and numerical considerations of rivers in a tectonically inactive foreland
Suspended sediment and discharge dynamics in a glaciated alpine environment: identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria
A multi-proxy assessment of terrace formation in the lower Trinity River valley, Texas
Alpine rock glacier activity over Holocene to modern timescales (western French Alps)
Spatio-temporal variability and controlling factors for postglacial denudation rates in the Dora Baltea catchment (western Italian Alps)
Continuous measurements of valley floor width in mountainous landscapes
Organic carbon burial by river meandering partially offsets bank erosion carbon fluxes in a discontinuous permafrost floodplain
Estuarine morphodynamics and development modified by floodplain formation
Convolutional neural networks for image-based sediment detection applied to a large terrestrial and airborne dataset
A geomorphic-process-based cellular automata model of colluvial wedge morphology and stratigraphy
Signal response of the Swiss plate geophone monitoring system impacted by bedload particles with different transport modes
Morphodynamic styles: characterising the behaviour of gravel-bed rivers using a novel, quantitative index
Rapid Holocene bedrock canyon incision of Beida River, North Qilian Shan, China
The landslide velocity
An analytical model for beach erosion downdrift of groins: case study of Jeongdongjin Beach, Korea
Volume, formation and sedimentation of future glacier lakes in Switzerland
Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling
Stochastic description of the bedload sediment flux
The role of geological mouth islands on the morphodynamics of back-barrier tidal basins
From apex to shoreline: fluvio-deltaic architecture for the Holocene Rhine–Meuse delta, the Netherlands
Intensified paraglacial slope failures due to accelerating downwasting of a temperate glacier in Mt. Gongga, southeastern Tibetan Plateau
The effect of debris-flow sediment grain size distribution on fan forming processes
Short communication: Forward and inverse models relating river long profile to monotonic step-changes in tectonic rock uplift rate history: A theoretical perspective under a nonlinear slope-erosion dependency
Breaking down chipping and fragmentation in sediment transport: the control of material strength
Multi-objective optimisation of a rock coast evolution model with cosmogenic 10Be analysis for the quantification of long-term cliff retreat rates
Linking levee-building processes with channel avulsion: Geomorphic analysis for assessing avulsion frequency and style
Triggering and propagation of exogenous sediment pulses in mountain channels: insights from flume experiments with seismic monitoring
Temporal changes in the debris flow threshold under the effects of ground freezing and sediment storage on Mt. Fuji
Sedimentary architecture and landforms of the late Saalian (MIS 6) ice sheet margin offshore of the Netherlands
Relationship between meteoric 10Be and NO3− concentrations in soils along Shackleton Glacier, Antarctica
Sediment shell-content diminishes current-driven sand ripple development and migration
Sand mining far outpaces natural supply in a large alluvial river
The formation and geometry characteristics of boulder bars due to outburst floods triggered by overtopped landslide dam failure
Landslide-lake outburst floods accelerate downstream hillslope slippage
The relative influence of dune aspect ratio and beach width on dune erosion as a function of storm duration and surge level
A temperature-dependent mechanical model to assess the stability of degrading permafrost rock slopes
The effects of storms and a transient sandy veneer on the interannual planform evolution of a low-relief coastal cliff and shore platform at Sargent Beach, Texas, USA
Development of a surface roughness curve to estimate timing of earthflows and habitat development in the Teanaway River, central Washington State, USA
Identification of rock and fracture kinematics in high alpine rockwalls under the influence of elevation
Controls on the grain size distribution of landslides in Taiwan: the influence of drop height, scar depth and bedrock strength
Assessing the effect of topography on Cs-137 concentrations within forested soils due to the Fukushima Daiichi Nuclear Power Plant accident, Japan
Central Himalayan rivers record the topographic signature of erosion by glacial lake outburst floods
Climatic controls on mountain glacier basal thermal regimes dictate spatial patterns of glacial erosion
Tectonically and climatically driven mountain-hopping erosion in central Guatemala from detrital 10Be and river profile analysis
Stochastic alluvial fan and terrace formation triggered by a high-magnitude Holocene landslide in the Klados Gorge, Crete
Controls on the rates and products of particle attrition by bed-load collisions
Bedrock river erosion through dipping layered rocks: quantifying erodibility through kinematic wave speed
Particle energy partitioning and transverse diffusion during rarefied travel on an experimental hillslope
Short communication: Runout of rock avalanches limited by basal friction but controlled by fragmentation
Rarefied particle motions on hillslopes – Part 1: Theory
Stefan Hergarten
Earth Surf. Dynam., 10, 671–686, https://doi.org/10.5194/esurf-10-671-2022, https://doi.org/10.5194/esurf-10-671-2022, 2022
Short summary
Short summary
Many studies on modeling landform evolution have focused on mountain ranges, while large parts of Earth's surface are quite flat and alluvial plains have been preferred locations for human settlements. Conducting large-scale simulations of fluvial erosion and sediment transport, this study reveals that rivers in a tectonically inactive foreland are much more dynamic than rivers in a mountain range; the local redistribution of deposits in the foreland is the main driver of the dynamics.
Lena Katharina Schmidt, Till Francke, Erwin Rottler, Theresa Blume, Johannes Schöber, and Axel Bronstert
Earth Surf. Dynam., 10, 653–669, https://doi.org/10.5194/esurf-10-653-2022, https://doi.org/10.5194/esurf-10-653-2022, 2022
Short summary
Short summary
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this affects riverine sediment transport. As a first step, we aimed to identify the most important processes and source areas in three nested catchments in the Ötztal, Austria, in the past 15 years. We found that areas above 2500 m were crucial and that summer rainstorms were less influential than glacier melt. These findings provide a baseline for studies on future changes in high-alpine sediment dynamics.
Hima J. Hassenruck-Gudipati, Thaddeus Ellis, Timothy A. Goudge, and David Mohrig
Earth Surf. Dynam., 10, 635–651, https://doi.org/10.5194/esurf-10-635-2022, https://doi.org/10.5194/esurf-10-635-2022, 2022
Short summary
Short summary
During the late Pleistocene, the incision of the Trinity River valley left behind terraces. Elevation data and measurements of abandoned channels preserved on terraces are used to evaluate how terraces formed. We find a transition in the style of terraces with age from those associated with external environmental forcings to those produced by internal river migration changes. This result shows the importance of several indicators (i.e., channel bends, elevations) in determining terrace form.
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022, https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Fiona J. Clubb, Eliot F. Weir, and Simon M. Mudd
Earth Surf. Dynam., 10, 437–456, https://doi.org/10.5194/esurf-10-437-2022, https://doi.org/10.5194/esurf-10-437-2022, 2022
Short summary
Short summary
River valleys are important components of mountain systems: they are the most fertile part of landscapes and store sediment which is transported from mountains to surrounding basins. Our knowledge of the location and shape of valleys is hindered by our ability to measure them over large areas. We present a new method for measuring the width of mountain valleys continuously along river channels from digital topography and show that our method can be used to test common models of river widening.
Madison M. Douglas, Gen K. Li, Woodward W. Fischer, Joel C. Rowland, Preston C. Kemeny, A. Joshua West, Jon Schwenk, Anastasia P. Piliouras, Austin J. Chadwick, and Michael P. Lamb
Earth Surf. Dynam., 10, 421–435, https://doi.org/10.5194/esurf-10-421-2022, https://doi.org/10.5194/esurf-10-421-2022, 2022
Short summary
Short summary
Arctic rivers erode into permafrost and mobilize organic carbon, which can react to form greenhouse gasses or be re-buried in floodplain deposits. We collected samples on a permafrost floodplain in Alaska to determine if more carbon is eroded or deposited by river meandering. The floodplain contained a mixture of young carbon fixed by the biosphere and old, re-deposited carbon. Thus, sediment storage may allow Arctic river floodplains to retain aged organic carbon even when permafrost thaws.
Maarten G. Kleinhans, Lonneke Roelofs, Steven A. H. Weisscher, Ivar R. Lokhorst, and Lisanne Braat
Earth Surf. Dynam., 10, 367–381, https://doi.org/10.5194/esurf-10-367-2022, https://doi.org/10.5194/esurf-10-367-2022, 2022
Short summary
Short summary
Floodplain formation in estuaries limit the ebb and flood flow, reducing channel migration and shortening the tidally influenced reach. Vegetation establishment on bars reduces local flow velocity and concentrates flow into channels, while mudflats fill accommodation space and reduce channel migration. These results are based on experimental estuaries in the Metronome facility supported by numerical flow modelling.
Xingyu Chen, Marwan A. Hassan, and Xudong Fu
Earth Surf. Dynam., 10, 349–366, https://doi.org/10.5194/esurf-10-349-2022, https://doi.org/10.5194/esurf-10-349-2022, 2022
Short summary
Short summary
We compiled a large image dataset containing more than 125 000 sediments and developed a model (GrainID) based on convolutional neural networks to measure individual grain size from images. The model was calibrated on flume and natural stream images covering a wide range of fluvial environments. The model showed high performance compared with other methods. Our model showed great potential for grain size measurements from a small patch of sediment in a flume to a watershed-scale drone survey.
Harrison J. Gray, Christopher B. DuRoss, Sylvia R. Nicovich, and Ryan D. Gold
Earth Surf. Dynam., 10, 329–348, https://doi.org/10.5194/esurf-10-329-2022, https://doi.org/10.5194/esurf-10-329-2022, 2022
Short summary
Short summary
Some types of big earthquakes create small cliffs or
fault scarps∼1–3 m in height, where sediments can pile up and create deposits we call
colluvial wedges. Geologists will look at colluvial wedges and use them to understand how often big earthquakes occur. Here we made a computer simulation to find out if the way we think colluvial wedges form works with physics. We found that it does in theory, but there are conditions in which it may be more complicated than we expected.
Zheng Chen, Siming He, Tobias Nicollier, Lorenz Ammann, Alexandre Badoux, and Dieter Rickenmann
Earth Surf. Dynam., 10, 279–300, https://doi.org/10.5194/esurf-10-279-2022, https://doi.org/10.5194/esurf-10-279-2022, 2022
Short summary
Short summary
Bedload flux quantification remains challenging in river dynamics due to variable transport modes. We used a passive monitoring device to record the acoustic signals generated by the impacts of bedload particles with different transport modes, and established the relationship between the triggered signals and bedload characteristics. The findings of this study could improve our understanding of the monitoring system and bedload transport process, and contribute to bedload size classification.
William H. Booker and Brett C. Eaton
Earth Surf. Dynam., 10, 247–260, https://doi.org/10.5194/esurf-10-247-2022, https://doi.org/10.5194/esurf-10-247-2022, 2022
Short summary
Short summary
Channel behaviour is a qualitative aspect of river research that needs development to produce a framework of analysis between and within types of channels. We seek to produce a quantitative metric that can capture how a channel changes using a pair of experiments and collecting easy to obtain data. We demonstrate that this new technique is capable of discerning between river types and may provide a new tool with which we may describe channel behaviour.
Yiran Wang, Michael E. Oskin, Youli Li, and Huiping Zhang
Earth Surf. Dynam., 10, 191–208, https://doi.org/10.5194/esurf-10-191-2022, https://doi.org/10.5194/esurf-10-191-2022, 2022
Short summary
Short summary
Beida River has an over-steepened reach presently located 10 km upstream of the North Qilian mountain front. It was formed because river incising into the bedrocks inside the mountain cannot keep up with river incising into the soft sediment in the basin. We suggest this over-steepened reach represents a fast incision period 3–4 kyr ago, deepening the canyon for ~35 m within ~700 years. The formation of this reach corresponds to a humid period related to strong Southeast Asian Monsoon influence.
Shiva P. Pudasaini and Michael Krautblatter
Earth Surf. Dynam., 10, 165–189, https://doi.org/10.5194/esurf-10-165-2022, https://doi.org/10.5194/esurf-10-165-2022, 2022
Short summary
Short summary
We present the first physics-based general landslide velocity model incorporating internal deformation and external forces. Voellmy–inviscid Burgers' equations are specifications of the novel advective–dissipative system. Unified analytical solutions constitute a new foundation of landslide velocity, providing key information to instantly estimate impact forces and describe breaking waves and folding, revealing that landslide dynamics are architectured by advection and reigned by forcing.
Changbin Lim, Soonmi Hwang, and Jung Lyul Lee
Earth Surf. Dynam., 10, 151–163, https://doi.org/10.5194/esurf-10-151-2022, https://doi.org/10.5194/esurf-10-151-2022, 2022
Short summary
Short summary
Recently, along the east coast of South Korea, seasonal beach erosion has been induced by structures which severely block the supply of sand from the upstream side. This study proposes a coastal solution that can predict the maximum indentation point in downdrift erosion formed downstream of groins by applying a parabolic bay shape equation (PBSE).
Tim Steffen, Matthias Huss, Rebekka Estermann, Elias Hodel, and Daniel Farinotti
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-12, https://doi.org/10.5194/esurf-2022-12, 2022
Revised manuscript accepted for ESurf
Short summary
Short summary
Climate change is rapidly altering high-alpine landscapes. The formation of glacier lakes in areas left behind by glacier retreat, is one of the many consequences. Here, we provide an estimate for the number, size, time of emergence, as well as sediment infill of future glacier lakes that will emerge in the Swiss Alps. We estimate that up to 683 potential lakes could emerge over the course of the 21st century, with the potential to hold a total water volume of up to 1.16 km3.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Kevin Pierce, Marwan Hassan, and Rui Ferreira
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-4, https://doi.org/10.5194/esurf-2022-4, 2022
Revised manuscript accepted for ESurf
Short summary
Short summary
We describe the flow of sediment in river channels by replacing the complicated details of the turbulent water by probability arguments. Our major conclusions are that (1) sediment transport can be related simply to the movements of individual sediment grains; (2) transport rates in river channels is inherently uncertain due to turbulence; and (3) particle movement in rivers is directly analogous to a number of phenomena which we understand relatively well, such as molecules moving in the air.
Yizhang Wei, Yining Chen, Jufei Qiu, Zeng Zhou, Peng Yao, Qin Jiang, Zheng Gong, Giovanni Coco, Ian Townend, and Changkuan Zhang
Earth Surf. Dynam., 10, 65–80, https://doi.org/10.5194/esurf-10-65-2022, https://doi.org/10.5194/esurf-10-65-2022, 2022
Short summary
Short summary
The barrier tidal basin is increasingly altered by human activity and sea-level rise. These environmental changes probably lead to the emergence or disappearance of islands, yet the effect of rocky islands on the evolution of tidal basins remains poorly investigated. Using numerical experiments, we explore the evolution of tidal basins under varying numbers and locations of islands. This work provides insights for predicting the response of barrier tidal basins in a changing environment.
Marc J. P. Gouw and Marc P. Hijma
Earth Surf. Dynam., 10, 43–64, https://doi.org/10.5194/esurf-10-43-2022, https://doi.org/10.5194/esurf-10-43-2022, 2022
Short summary
Short summary
If you were to navigate an entire delta by boat, you would clearly see that the general characteristics of the channels change throughout the delta. The drivers behind these changes have been studied extensively. Field studies encompassing the entire delta are rare but give important insights into these drivers that can help other researchers. The most important drivers are channel lateral-migration rate, channel-belt longevity, creation of accommodation space and inherited floodplain width.
Yan Zhong, Qiao Liu, Matthew Westoby, Yong Nie, Francesca Pellicciotti, Bo Zhang, Jialun Cai, Guoxiang Liu, Haijun Liao, and Xuyang Lu
Earth Surf. Dynam., 10, 23–42, https://doi.org/10.5194/esurf-10-23-2022, https://doi.org/10.5194/esurf-10-23-2022, 2022
Short summary
Short summary
Slope failures exist in many paraglacial regions and are the main manifestation of the interaction between debris-covered glaciers and slopes. We mapped paraglacial slope failures (PSFs) along the Hailuogou Glacier (HLG), Mt. Gongga, southeastern Tibetan Plateau. We argue that the formation, evolution, and current status of these typical PSFs are generally related to glacier history and paraglacial geomorphological adjustments, and influenced by the fluctuation of climate conditions.
Haruka Tsunetaka, Norifumi Hotta, Yuichi Sakai, and Thad Wasklewicz
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-69, https://doi.org/10.5194/esurf-2021-69, 2021
Revised manuscript under review for ESurf
Short summary
Short summary
Two simulations are performed using mono-granular and multi-granular flows with the same average grain size, while all the other conditions were kept the same. The mono-granular flow formed a symmetric-like fan morphology as there was less avulsion during formative processes. The multi-granular flows resulted in bilaterally widened avulsions during the early stages of the inundation, and the runout directions shifted as the topography evolved, and resulted in asymmetric fan morphology.
Yizhou Wang, Liran Goren, Dewen Zheng, and Huiping Zhang
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-101, https://doi.org/10.5194/esurf-2021-101, 2021
Revised manuscript under review for ESurf
Short summary
Short summary
Abrupt changes in tectonic uplift rates induce sharp changes in river profile, called knickpoints. When river erosion depends non-linearly on slope, we develop an analytic model for knickpoint velocity and find the condition of two knickpoint merging. Then we develop analytic models that represent the two-directional link between tectonic changes and river profile evolution. The derivation provides new understanding on the links between tectonic changes and river profile evolution.
Sophie Bodek and Douglas J. Jerolmack
Earth Surf. Dynam., 9, 1531–1543, https://doi.org/10.5194/esurf-9-1531-2021, https://doi.org/10.5194/esurf-9-1531-2021, 2021
Short summary
Short summary
As rocks are transported, they undergo two attrition mechanisms: chipping, shallow cracking at low collision energies; and fragmentation, significant fracture growth from high-energy impacts. We examine the mass and shape evolution of concrete particles in a rotating drum to experimentally delineate the boundary between chipping and fragmentation. By connecting the mechanics of these attrition processes to resulting shape evolution, we can use particle shape to infer past transport conditions.
Jennifer R. Shadrick, Martin D. Hurst, Matthew D. Piggott, Bethany G. Hebditch, Alexander J. Seal, Klaus M. Wilcken, and Dylan H. Rood
Earth Surf. Dynam., 9, 1505–1529, https://doi.org/10.5194/esurf-9-1505-2021, https://doi.org/10.5194/esurf-9-1505-2021, 2021
Short summary
Short summary
Here we use topographic and 10Be concentration data to optimise a coastal evolution model. Cliff retreat rates are calculated for two UK sites for the past 8000 years and, for the first time, highlight a strong link between the rate of sea level rise and long-term cliff retreat rates. This method enables us to study past cliff response to sea level rise and so to greatly improve forecasts of future responses to accelerations in sea level rise that will result from climate change.
Jeongyeon Han and Wonsuck Kim
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-92, https://doi.org/10.5194/esurf-2021-92, 2021
Revised manuscript accepted for ESurf
Short summary
Short summary
A levee-building model is presented to demonstrate the effects of flood conditions on levee slope, linking with river avulsion processes. Input grain size and levee slope are positively correlated with avulsion frequency, but overflow velocity is inversely related to it. High levee slopes develop local avulsions whereas low slopes develop regional avulsions. The link between the levee geometry and avulsion behaviours provides a better assessment of the flood hazards triggered by avulsion.
Marco Piantini, Florent Gimbert, Hervé Bellot, and Alain Recking
Earth Surf. Dynam., 9, 1423–1439, https://doi.org/10.5194/esurf-9-1423-2021, https://doi.org/10.5194/esurf-9-1423-2021, 2021
Short summary
Short summary
We carry out laboratory experiments to investigate the formation and propagation dynamics of exogenous sediment pulses in mountain rivers. We show that the ability of a self-formed deposit to destabilize and generate sediment pulses depends on the sand content of the mixture, while each pulse turns out to be formed by a front, a body, and a tail. Seismic measurements reveal a complex and non-unique dependency between seismic power and sediment pulse transport characteristics.
Fumitoshi Imaizumi, Atsushi Ikeda, Kazuki Yamamoto, and Okihiro Ohsaka
Earth Surf. Dynam., 9, 1381–1398, https://doi.org/10.5194/esurf-9-1381-2021, https://doi.org/10.5194/esurf-9-1381-2021, 2021
Short summary
Short summary
The rainfall threshold for debris flow occurrence was evaluated on Mt. Fuji, Japan. Debris flows during frozen periods were triggered by a smaller magnitude of rainfall than during unfrozen periods. During unfrozen periods, the threshold of maximum hourly rainfall intensity triggering debris flow was higher when the volume of channel deposits was larger. The results suggest that the occurrence of frozen ground needs to be monitored for better debris flow disaster mitigation in cold regions.
Víctor Cartelle, Natasha L. M. Barlow, David M. Hodgson, Freek S. Busschers, Kim M. Cohen, Bart M. L. Meijninger, and Wessel P. van Kesteren
Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, https://doi.org/10.5194/esurf-9-1399-2021, 2021
Short summary
Short summary
Reconstructing the growth and decay of past ice sheets is critical to understand relationships between global climate and sea-level change. We take advantage of large wind-farm datasets in the southern North Sea to investigate buried landscapes left by ice sheet advance and retreat occurring about 160 000 years ago. We demonstrate the utility of offshore wind-farm data in refining palaeo-ice sheet margin limits and providing insight into the processes influencing marginal ice sheet dynamics.
Melisa A. Diaz, Lee B. Corbett, Paul R. Bierman, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Earth Surf. Dynam., 9, 1363–1380, https://doi.org/10.5194/esurf-9-1363-2021, https://doi.org/10.5194/esurf-9-1363-2021, 2021
Short summary
Short summary
We collected soil surface samples and depth profiles every 5 cm (up to 30 cm) from 11 ice-free areas along the Shackleton Glacier, a major outlet glacier of the East Antarctic Ice Sheet (EAIS), and measured meteoric beryllium-10 and nitrate concentrations to understand the relationship between salts and beryllium-10. This relationship can help inform wetting history, landscape disturbance, and exposure duration.
Chiu H. Cheng, Jaco C. de Smit, Greg S. Fivash, Suzanne J. M. H. Hulscher, Bas W. Borsje, and Karline Soetaert
Earth Surf. Dynam., 9, 1335–1346, https://doi.org/10.5194/esurf-9-1335-2021, https://doi.org/10.5194/esurf-9-1335-2021, 2021
Short summary
Short summary
Shells are biogenic particles that are widespread throughout natural sandy environments and can affect the bed roughness and seabed erodibility. As studies are presently lacking, we experimentally measured ripple formation and migration using natural sand with increasing volumes of shell material under unidirectional flow in a racetrack flume. We show that shells expedite the onset of sediment transport, reduce ripple dimensions and slow their migration rate.
Christopher R. Hackney, Grigorios Vasilopoulos, Sokchhay Heng, Vasudha Darbari, Samuel Walker, and Daniel R. Parsons
Earth Surf. Dynam., 9, 1323–1334, https://doi.org/10.5194/esurf-9-1323-2021, https://doi.org/10.5194/esurf-9-1323-2021, 2021
Short summary
Short summary
Unsustainable sand mining poses a threat to the stability of river channels. We use satellite imagery to estimate volumes of material removed from the Mekong River, Cambodia, over the period 2016–2020. We demonstrate that current rates of extraction now exceed previous estimates for the entire Mekong Basin and significantly exceed the volume of sand naturally transported by the river. Our work highlights the importance of satellite imagery in monitoring sand mining activity over large areas.
Xiangang Jiang, Haiguang Cheng, Lei Gao, and Weiming Liu
Earth Surf. Dynam., 9, 1263–1277, https://doi.org/10.5194/esurf-9-1263-2021, https://doi.org/10.5194/esurf-9-1263-2021, 2021
Short summary
Short summary
Boulder bars are a common form of riverbed morphology which can be affected by outburst flood. However, few studies have focused on boulder bars' formation process and development characteristics during landslide dam failure. In this paper, eight groups of dam failure experiments were carried out to study the development and geometry characteristics of boulder bars during and after dam failure. Moreover, the relationships between geometry parameters of boulder bars are investigated.
Wentao Yang, Jian Fang, and Jing Liu-Zeng
Earth Surf. Dynam., 9, 1251–1262, https://doi.org/10.5194/esurf-9-1251-2021, https://doi.org/10.5194/esurf-9-1251-2021, 2021
Short summary
Short summary
The eastern Tibetan Plateau is an ideal place to study interactions among different geomorphic drivers. We report the impacts of two 2018 landslide-lake outburst floods up to 100 km distance downstream of the Jinsha River. By using remote sensing images, we found that the 2018 floods caused many hillslopes to slump during the prolonged period afterwards. The finding could help us to obtain a holistic picture of LLF impacts and improve geomorphic models of landscape evolution.
Michael Itzkin, Laura J. Moore, Peter Ruggiero, Sally D. Hacker, and Reuben G. Biel
Earth Surf. Dynam., 9, 1223–1237, https://doi.org/10.5194/esurf-9-1223-2021, https://doi.org/10.5194/esurf-9-1223-2021, 2021
Short summary
Short summary
Studies of the impact of storms on dunes typically focus on the importance of dune elevation,
here we analyze the protective services offered by the dune height and width, the morphology
of the beach fronting the dune, and artificial dune construction via the use of sand fences.
We find that dune volume loss most strongly correlates to beach width rather than dune shape,
although when beach width is controlled for low and wide dunes offer greater protection than
tall and narrow dunes.
Philipp Mamot, Samuel Weber, Saskia Eppinger, and Michael Krautblatter
Earth Surf. Dynam., 9, 1125–1151, https://doi.org/10.5194/esurf-9-1125-2021, https://doi.org/10.5194/esurf-9-1125-2021, 2021
Short summary
Short summary
The mechanical response of permafrost degradation on high-mountain rock slope stability has not been calculated in a numerical model yet. We present the first approach for a model with thermal and mechanical input data derived from laboratory and field work, and existing concepts. This is applied to a test site at the Zugspitze, Germany. A numerical sensitivity analysis provides the first critical stability thresholds related to the rock temperature, slope angle and fracture network orientation.
Rose V. Palermo, Anastasia Piliouras, Travis E. Swanson, Andrew D. Ashton, and David Mohrig
Earth Surf. Dynam., 9, 1111–1123, https://doi.org/10.5194/esurf-9-1111-2021, https://doi.org/10.5194/esurf-9-1111-2021, 2021
Short summary
Short summary
At Sargent Beach, Texas, USA, a rapidly eroding soft-sediment cliff system, we study the planform evolution of the cliff face in response to storms and sediment cover. Through this analysis, we characterize the feedbacks between morphology and retreat rate of a cliff face. We find that after a storm event, the roughness and sinuosity of the cliff face increase, which sustains higher retreat rates for years following.
Sarah Anne Schanz and Armistead Peyton Colee
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-61, https://doi.org/10.5194/esurf-2021-61, 2021
Revised manuscript accepted for ESurf
Short summary
Short summary
We dated 187 earthflows to determine how they impacted salmon habitat in the Teanaway basin, central Washington State, USA. We developed a new method to date earthflows that uses the texture and directionality of the landscape. Earthflows were active 3-5000 years ago, with some active in the last 1000 years. The period of earthflow activity coincides with climate change as well as large salmon populations, suggesting the wide floodplains formed by earthflows overall increased habitat.
Daniel Draebing
Earth Surf. Dynam., 9, 977–994, https://doi.org/10.5194/esurf-9-977-2021, https://doi.org/10.5194/esurf-9-977-2021, 2021
Short summary
Short summary
Alpine rockwalls are affected by weathering processes that result in rock and fracture deformation. This deformation decreases rockwall stability with time. I installed crackmeters along a topographic gradient to identify the spatial and temporal variation of weathering processes. My data show that elevation-dependent snow cover, topographic factors and fracture dipping control the frequency and magnitude of weathering processes and resulting rock kinematics.
Odin Marc, Jens M. Turowski, and Patrick Meunier
Earth Surf. Dynam., 9, 995–1011, https://doi.org/10.5194/esurf-9-995-2021, https://doi.org/10.5194/esurf-9-995-2021, 2021
Short summary
Short summary
The size of grains delivered to rivers is an essential parameter for understanding erosion and sediment transport and their related hazards. In mountains, landslides deliver these rock fragments, but few studies have analyzed the landslide properties that control the resulting sizes. We present measurements on 17 landslides from Taiwan and show that their grain sizes depend on rock strength, landslide depth and drop height, thereby validating and updating a previous theory on fragmentation.
Misa Yasumiishi, Taku Nishimura, Jared Aldstadt, Sean J. Bennett, and Thomas Bittner
Earth Surf. Dynam., 9, 861–893, https://doi.org/10.5194/esurf-9-861-2021, https://doi.org/10.5194/esurf-9-861-2021, 2021
Short summary
Short summary
Topographic effects on radioactive contamination in a forested area were quantitatively examined using soil core samples collected in a village in Fukushima, Japan. The results confirmed that local topography influences the contamination patterns in soils, and its effects vary depending on the combinations of the topographic parameters. This finding suggests that topographic characteristics should be considered carefully in future environmental radioactive risk assessments.
Maxwell P. Dahlquist and A. Joshua West
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-54, https://doi.org/10.5194/esurf-2021-54, 2021
Revised manuscript accepted for ESurf
Short summary
Short summary
Himalayan rivers are full of giant boulders that almost never move except during glacial lake outburst floods (GLOFs). GLOFs therefore must be very important for driving erosion. GLOFs are rare, so little is known about how they control erosion long-term. We analyzed rivers in the Nepal Himalaya and found the slopes and widths of channels and valleys suggest GLOFs as the dominant means of erosion. This is often unaccounted for in erosion and landscape evolution studies and should be considered.
Jingtao Lai and Alison M. Anders
Earth Surf. Dynam., 9, 845–859, https://doi.org/10.5194/esurf-9-845-2021, https://doi.org/10.5194/esurf-9-845-2021, 2021
Short summary
Short summary
Glaciers are strong erosive agents, and they have created many unique landforms in mountain belts. Climate has been viewed as a primary control on glacial erosion, yet our understanding of the mechanism by which climate impacts glacial erosion remains limited. Using computer simulations, we find that climate controls glacial erosion by modulating the temperature of the basal ice. Our results suggest that a warm and/or wet climate can create warm basal ice and, therefore, enhance erosion.
Gilles Brocard, Jane Kathrin Willenbring, Tristan Salles, Michael Cosca, Axel Guttiérez-Orrego, Noé Cacao Chiquín, Sergio Morán-Ical, and Christian Teyssier
Earth Surf. Dynam., 9, 795–822, https://doi.org/10.5194/esurf-9-795-2021, https://doi.org/10.5194/esurf-9-795-2021, 2021
Short summary
Short summary
The rise of a mountain affects the circulation of water, both in the atmosphere and over the land surface, thereby affecting the erosion of the land surface. We document how the rise of a mountain in central Guatemala has affected the erosion of an older range nearby. The new range intercepts precipitation formerly delivered to the older range. River response to the uplift of the new range has decreased incision across the older one. Both have reduced hillslope erosion over the old range.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Kimberly Litwin Miller and Douglas Jerolmack
Earth Surf. Dynam., 9, 755–770, https://doi.org/10.5194/esurf-9-755-2021, https://doi.org/10.5194/esurf-9-755-2021, 2021
Short summary
Short summary
We conducted experiments to investigate the mechanics of sediment attrition due to collisions with the channel bed during downstream transport. During this process, the grains become rounder and smaller, changing the overall distribution of sediment in the river. In this work we examine how material properties play a role in the breakdown of sediment due to energetic collisions and the fine particles that are produced when chipped off of larger grains.
Nate A. Mitchell and Brian J. Yanites
Earth Surf. Dynam., 9, 723–753, https://doi.org/10.5194/esurf-9-723-2021, https://doi.org/10.5194/esurf-9-723-2021, 2021
Short summary
Short summary
A landscape's appearance reflects the properties of the underlying bedrock. For example, strong bedrock can lead to steep slopes. Recent work has shown, however, that in areas with mixed rock types the stronger bedrock can have lower slopes. In this study, we use numerical models of bedrock river erosion to show why this change in behavior occurs. We also present a new approach for estimating bedrock erodibility. This new approach can allow for new opportunities in the field of geomorphology.
Sarah G. W. Williams and David J. Furbish
Earth Surf. Dynam., 9, 701–721, https://doi.org/10.5194/esurf-9-701-2021, https://doi.org/10.5194/esurf-9-701-2021, 2021
Short summary
Short summary
Particle motions and travel distances prior to deposition on hillslope surfaces depend on a balance of gravitational and frictional forces. We elaborate how particle energy is partitioned and dissipated during travel using measurements of particle travel distances supplemented with high-speed imaging of drop–impact–rebound experiments. Results show that particle shape plays a dominant role in how energy is partitioned during impact with a surface and how far particles travel in two dimensions.
Øystein T. Haug, Matthias Rosenau, Michael Rudolf, Karen Leever, and Onno Oncken
Earth Surf. Dynam., 9, 665–672, https://doi.org/10.5194/esurf-9-665-2021, https://doi.org/10.5194/esurf-9-665-2021, 2021
Short summary
Short summary
The runout of rock avalanches scales with their volume but also shows a considerable variation for avalanches with similar volumes. Here we show that besides size-dependent weakening mechanisms, fragmentation can account for the observed variability in runout. We use laboratory-scale experimental avalanches to simulate and analyse the role of fragmentation. We find that fragmentation consumes energy but also increases avalanche mobility. It does so systematically and predictably.
David Jon Furbish, Joshua J. Roering, Tyler H. Doane, Danica L. Roth, Sarah G. W. Williams, and Angel M. Abbott
Earth Surf. Dynam., 9, 539–576, https://doi.org/10.5194/esurf-9-539-2021, https://doi.org/10.5194/esurf-9-539-2021, 2021
Short summary
Short summary
Sediment particles skitter down steep hillslopes on Earth and Mars. Particles gain speed in going downhill but are slowed down and sometimes stop due to collisions with the rough surface. The likelihood of stopping depends on the energetics of speeding up (heating) versus slowing down (cooling). Statistical physics predicts that particle travel distances are described by a generalized Pareto distribution whose form varies with the Kirkby number – the ratio of heating to cooling.
Cited articles
Allison, R. and Brunsden, D.: Some mudslide movement patterns, Earth
Surf. Proc. Land., 15, 297–311, 1990.
Angeli, M. G., Gasparetto, P., Menotti, R. M., Pasuto, H., and Silvano, S.: A
visco-plastic model for slope analysis applied to a mudslide in Cortina
d'Ampezzo, Italy, Q. J. Eng. Geol.
Hydroge., 29, 233–240, 1996.
Angeli, M. G., Gasparetto, P., and Bromhead, E.: Strength-regain Mechanisms
in Intermittently Moving Landslides, Proceedings of the 9th International
Symposium on Landslides, 28 June–2 July 2004, Rio de Janeiro, Brazil, 1, 689–696, 2004.
Bertini, T., Cugusi, F., D'Elia, B., and Rossi-Doria, M.: Climatic
Conditions and Slow Movements of Colluvial Covers in Central Italy,
Proceedings of the IV International Symposium on landslides, 16–21 September 1984, Toronto, Canada, 1, 367–376, 1984.
Brain, M. J., Rosser, N. J., Sutton, J., Snelling, K., Tunstall, N., and
Petley, D. N.: The effects of normal and shear stress wave phasing on
coseismic landslide displacement, J. Geophys. Res.-Earth, 120, 1009–1022, 2015.
British Standards Institute (BSI): British standard methods of test for
soils for civil engineering purposes. Part 1: General requirements and
sample preparation. BS 1377: Part 1. Board. US National Research Council,
Washington, DC, USA, 36–75 Special Report 247, 1990.
Carey, J. M., McSaveney, M. J., Lyndsell, B. M., and Petley, D. N.: Laboratory
simulation of a slow landslide mechanism, in: Landslides and engineered
slopes: experience, theory and practice: proceedings of the 12th
International Symposium on Landslides, 12–19 June 2016, Naples, Italy, edited by: Aversa, S.,
Cascini, L., Picarelli, L., and Scavia, C., 2, 557–564, 2016.
Carey, J. M., McSaveney, M. J., and Petley, D. N.: Dynamic liquefaction of
shear zones in intact loess during simulated earthquake loading,
Landslides, 14, 789–804, 2017.
Collins, B. D. and Jibson, R. W.: Assessment of existing and potential
landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake
sequence, U.S. Geological Survey Open-File Report 2015–1142, 50 pp., https://doi.org/10.3133/ofr20151142, 2015.
Corominas, J., Moya, J., Ledesma, A., Lloret, A., and Gili, J.A.: Monitoring
of the Vallcebre landslide, Eastern Pyrenees, Spain, Proceedings of the
International symposium on Slope Stability Engineering. IS-Shikoku' 99, 8–11 November 1999,
Matsuyama, Japan, 1239–1244, 1999.
Corominas, J., Moya, J., Ledesma, A., Lloret, A., and Gill, J. A.: Prediction
of Ground Displacements and Velocities from Groundwater Level Changes at the
Vallebre Landslide (Eastern Pyrenees, Spain), Landslides, 2, 83–96, 2005.
Dellow, G. D., McSaveney, M. J., Stirling, M. W., and Berryman, K. R.: A
Probabilistic Landslide Hazard Model for New Zealand, in: Geological Society of New Zealand 50th Annual
Conference, 28 November–1 December 2005, Kaikoura, New Zealand, Programme & Abstracts, edited by: Pettinga, J. R. and Wandres, A. M., 119A, Geological Society of New Zealand Miscellaneous
Publication, p. 24, 2005.
Dreyfus, D., Rathje, E. M., and Jibson, R. W.: The influence of different
simplified sliding-block models and input parameters on regional predictions
of seismic landslides triggered by the Northridge earthquake, Eng.
Geol., 163, 41–54, 2013.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
GeoNet: Geological hazard information for New Zealand, available at: https://www.geonet.org.nz/data/gnss/map, last access: 5 August 2019.
Gonzalez, D. A., Ledesma, A., and Corominas, J.: The viscous component in
slow-moving landslides: a practical case, in: Landslides and Engineered Slopes, Proceedings of the 10th International Symposium on Landsldies and Engineered Slopes, 30 June–4 July 2018, Xian, China, edited by: Chen, Z., Zhang, J.-M., Ho, K., Wu, F.-Q., and Li, Z.-K., 237–242, 2008.
Hovius, N., Meunier, P., Lin, C.-W., Chen, H., Chen, Y.-G., Dadson, S.,
Horng, M.-J., and Lines, M.: Prolonged seismically induced erosion and the mass
balance of a large earthquake, Earth Planet. Sci-. Lett., 304,
347–355, 2011.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194, 2014.
Jibson, R. W.: Methods for assessing the stability of slopes during
earthquakes – A retrospective, Eng. Geol., 122, 43–50,
2011.
Keefer, D. K.: The importance of earthquake-induced landslides to long-term
slope eroion and slope-failure hazards in seismically active regions,
Geomorphology, 10, 265–284, 1994.
Kilsby, C.: An engineering geological appraisal of the Utiku Landslide,
North Island, New Zealand, MSc Thesis, University of Portsmouth, Portsmouth, UK, 2007.
Lee, E. M., Bland, K. J., Townsend, D. B., and Kamp, P. J. J.: Geology of the
Hawkes Bay area. 1 : 25 000
geological map 8, Institute of Geological and Nuclear Sciences
Limited, Lower Hutt, New Zealand, 2012.
Leroueil, S., Locat, J., Vaunat, J., Picarelli, L., and Faure. R.:
Geotechnical characterisation of slope movements, in: Proceedings of the
Seventh International Symposium on Landslides, 17–21 June 1996, edited by: Senneset, K., Trondheim,
Norway, Balkema, Rotterdam, the Netherlands, 1, 53–74, 1996.
Li, G., West, A. J., Densmore, A. L., Jin, Z., Parker, R. N., and Hilton, R. G.:
Seismic mountain building: Landslides associated with the 2008 Wenchuan
earthquake in the context of a generalized model for earthquake volume
balance, Geochem. Geophy. Geosy., 15, 833–844, 2014.
Lupini, J. F., Skinner A. E., and Vaughan P. R.: The drained residual strength of cohesive soils, Geotechnique, 31, 181–213, 1981.
Makdisi, F. I. and Seed, H. B.: Simplified procedure for evaluating
embankment response, J. Geotech. Eng.-ASCE, 105, 1427–1434, 1978.
Massey, C. I.: The dynamics of reactivated landslides: Utiku and Taihape,
North Island, New Zealand, PhD thesis, Durham University, Durham, UK, 2010.
Massey, C. I., Petley, D. N., and McSaveney, M. J.: Patterns of movement in
reactivated landslides, Eng. Geol., 159, 1–19, 2013.
Massey, C. I., Abbott, E. R., McSaveney, M. J., Petley, D. N., and Richards, L.:
Earthquake-induced displacement is insignificant in the reactivated Utiku
landslide, New Zealand, in: Landslides and engineered slopes: experience, theory and practice: proceedings of the 12th International Symposium on Landslides, 12–19 June 2016, edited by: Aversa, S., Cascini, L., Picarelli, L., and Scavia, C., Boca Raton, Fla., USA, 31–52, 2016.
Massey, C. I., Townsend, D. B., Rathje, E., Allstadt, K. E., Lukovic, B.,
Kaneko, Y., Bradley, B., Wartman, J., Jibson, R. W., Petley, D. N., Horspool,
N. A., Hamling, I. J., Carey, J. M., Cox, S. C., Davidson, J., Dellow, G. D.,
Godt, G. W., Holden, C., Jones, K. E., Kaiser, A. E., Little, M., Lyndsell,
B. M., McColl, S., Morgenstern, R. M., Rengers, F. K., Rhoades, D. A., Rosser,
B. J., Strong, D. T., Singeisen, C., and Villeneuve, M.: Landslides triggered
by the 14 November 2016 Mw 7.8 Kaikoura earthquake, New Zealand, B.
Seismol. Soc. Am., 108, 1630–1648, https://doi.org/10.1785/0120170305, 2018.
Mcoll, S. T. and McCabe, M.: The causes and Agricultural impacts of large
translational landslides: Case studies from North Island, New Zealand, in:
Landslides and
engineered slopes: experience, theory and practice: proceedings of the 12th
International Symposium on Landslides, 12–19 June 2016, edited by: Aversa, S., Cascini, L., Picarelli, L., and Scavia, C., Boca Raton, Fla., 1401–1408, 2016.
Moon, A. T., Wilson, R. A., and Flentje, P.: Developing and using landslide
size frequency models, in: Proceedings of the International Conference on Landslide Risk Management, 18th Annual Vancouver Geotechnical Society Symposium, Vancouver, Canada, 31 May–4 June 2005, 589–598, available at: http://ro.uow.edu.au/engpapers/384 (last access: 2 August 2019),
2005.
Newmark, N.: Effects of earthquakes on dams and embankments, Geotechnique,
15, 139–160, 1965.
Ng, K.-Y. and Petley, D. N.: A process approach towards landslide risk
management in Hong Kong, Q. J. Eng. Geol.
Hydroge., 42, 487–498, 2009.
Petley, D. N.: Global patterns of loss of life from landslides, Geology,
40, 927–930, 2012.
Petley, D. N., Higuchi, T., Bulmer, M. H., and Carey, J.: The development of
progressive landslide failure in cohesive materials, Geology, 30, 719–722,
2005.
Petley, D. N., Dunning, S. A., Rosser, N. J., and Kausar, A. B.: Incipient
landslides in the Jhelum Valley, Pakistan following the 8th October 2005
earthquake, in: In Disaster Mitigation of Debris Flows, Slope
Failures and Landslides, edited by: Marui, H., Universal Academy Press, Tokyo, Japan, 47–56, 2006.
Petley, D. N., Carey, J. M., Ng, K.-Y., Massey, C. I., and Froude, M. J.:
Understanding patterns of movement for slow moving landslides, in:
20th Symposium of the New Zealand Geotechnical Society, 24–26 November 2017, edited by: Alexander, G. J. and Chin, C. Y., Napier, New Zealand, 2017.
Picarelli, L.: Considerations about the mechanics of slow active landslides
in clay, chap. 3, in: Progress in Landslide Science, edited by: Sassa, K., Fukuoka, H., Wang, F., and Wang, G., Springer-Verlag, Berlin, Hiedelberg, Germany, 27–57, 2007.
Rosser, B. J., Dellow, G. D., Haubrock, S. N., and Glassey, P. J.: New Zealand's
National Landslide Database, Landslides, 14, 1949–1959, 2017.
Seed, H. B. and Goodman, R. E.: Earthquake stability of slopes of cohesionless soils, Journal of the Soil Mechanics and Foundations Division, 90,
43–74, 1964.
Skempton, A. W.: Residual Strength of Clays in Landslide, Folded Strata and
the Laboratory, Geotechnique, 35, 3–18, 1985.
Stirling, M., McVerry, G., Gerstenberger, M., Litchfield, N., Van Dissen,
R., Berryman, K., Barnes, P., Wallace, L., Bradley, B., Villamor, P.,
Langridge, R., Lamarche, G., Nodder, S., Reyners, M., Rhoades, D., Smith,
W., Nicol, A., Pettinga, J., Clark, K., and Jacobs, K.: National Seismic
Hazard Model for New Zealand: 2010 Update, B. Seismol.
Soc. Am., 102, 1514–1542, 2012.
Stout, M. L.: The Utiku landslide, North Island, New Zealand, Geological
Society of America: Reviews in Engineering Geology, 3, 171–184, 1977.
Thompson, R. C.: Relationship of geology to slope failures in soft rocks of
the Taihape-Mangweka area, Central North Island, New Zealand, PhD Thesis,
University of Auckland, Auckland, New Zealand, 1982.
Valagussa, A., Frattini, P., Crosta, G. B., and Valbuzzi, E.: Pre and post
Nepal earthquake landslide inventories, in: Landslides and engineered slopes:
experience, theory and practice: proceedings of the 12th International
Symposium on Landslides, 12–19 June 2016, edited by: Aversa, S., Cascini, L.,
Picarelli, L., and Scavia, C., Boca Raton, Fla., USA, 1957–1964, 2016.
van Asch, W. J., Malet, J. P., and Bogaard, T. A.: Problems in predicting the
mobility of slow-moving landslides, Eng. Geol., 91, 45–55, 2007.
Wilson, R. C. and Keefer, D. K.: Dynamic analysis of a slope failure from
the 6 August 1979 Coyote Lake, California, earthquake, B.
Seismol. Soc. Am., 73, 863–877, 1983.
Short summary
Slow-moving landslides are a major hazard but their movement mechanisms during earthquakes and rainstorms are not fully understood. We collected samples from a slow-moving landslide complex in New Zealand and subjected them to a range of porewater pressure and dynamic stress scenarios in a dynamic back-pressured shear box. Our results show how the complex movement patterns, observed in many large slow-moving landslides, may be mobilized by strong earthquakes and significant rain events.
Slow-moving landslides are a major hazard but their movement mechanisms during earthquakes and...