Articles | Volume 8, issue 3
Earth Surf. Dynam., 8, 789–808, 2020
https://doi.org/10.5194/esurf-8-789-2020
Earth Surf. Dynam., 8, 789–808, 2020
https://doi.org/10.5194/esurf-8-789-2020

Research article 23 Sep 2020

Research article | 23 Sep 2020

Morphometric properties of alternate bars and water discharge: a laboratory investigation

Marco Redolfi et al.

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Inertial drag and lift forces for coarse grains on rough alluvial beds measured using in-grain accelerometers
Georgios Maniatis, Trevor Hoey, Rebecca Hodge, Dieter Rickenmann, and Alexandre Badoux
Earth Surf. Dynam., 8, 1067–1099, https://doi.org/10.5194/esurf-8-1067-2020,https://doi.org/10.5194/esurf-8-1067-2020, 2020
Short summary
GERALDINE (Google Earth Engine supRaglAciaL Debris INput dEtector): a new tool for identifying and monitoring supraglacial landslide inputs
William D. Smith, Stuart A. Dunning, Stephen Brough, Neil Ross, and Jon Telling
Earth Surf. Dynam., 8, 1053–1065, https://doi.org/10.5194/esurf-8-1053-2020,https://doi.org/10.5194/esurf-8-1053-2020, 2020
Short summary
Short communication: Multiscalar roughness length decomposition in fluvial systems using a transform-roughness correlation (TRC) approach
David L. Adams and Andrea Zampiron
Earth Surf. Dynam., 8, 1039–1051, https://doi.org/10.5194/esurf-8-1039-2020,https://doi.org/10.5194/esurf-8-1039-2020, 2020
Short summary
Evolution of events before and after the 17 June 2017 rock avalanche at Karrat Fjord, West Greenland – a multidisciplinary approach to detecting and locating unstable rock slopes in a remote Arctic area
Kristian Svennevig, Trine Dahl-Jensen, Marie Keiding, John Peter Merryman Boncori, Tine B. Larsen, Sara Salehi, Anne Munck Solgaard, and Peter H. Voss
Earth Surf. Dynam., 8, 1021–1038, https://doi.org/10.5194/esurf-8-1021-2020,https://doi.org/10.5194/esurf-8-1021-2020, 2020
Short summary
Complementing scale experiments of rivers and estuaries with numerically modelled hydrodynamics
Steven A. H. Weisscher, Marcio Boechat-Albernaz, Jasper R. F. W. Leuven, Wout M. Van Dijk, Yasuyuki Shimizu, and Maarten G. Kleinhans
Earth Surf. Dynam., 8, 955–972, https://doi.org/10.5194/esurf-8-955-2020,https://doi.org/10.5194/esurf-8-955-2020, 2020
Short summary

Cited articles

Adami, L., Bertoldi, W., and Zolezzi, G.: Multidecadal dynamics of alternate bars in the Alpine Rhine River, Water Resour. Res., 52, 8938–8955, https://doi.org/10.1002/2015WR018228, 2016. a
Ahmari, H. and Da Silva, A. M. F.: Regions of bars, meandering and braiding in da Silva and Yalin's plan, J. Hydraul. Res., 49, 718–727, https://doi.org/10.1080/00221686.2011.614518, 2011. a
Ashmore, P. E.: Laboratory modelling of gravel braided stream morphology, Earth Surf. Proc. Land., 7, 201–225, https://doi.org/10.1002/esp.3290070301, 1982. a
Ashmore, P.: Morphology and Dynamics of Braided Rivers, in: Treatise on Geomorphology, Elsevier, vol. 9, 289–312, https://doi.org/10.1016/B978-0-12-374739-6.00242-6, 2013. a
Bertagni, M. B. and Camporeale, C.: Finite amplitude of free alternate bars with suspended load, Water Resour. Res., 55, 9759–9773, https://doi.org/10.1029/2018WR022819, 2018. a, b
Download
Short summary
Alternate bars are large sediment deposits that tend to naturally form in rivers when the channel width is sufficiently large. Our laboratory experiments on a scaled model reveal that equilibrium properties of self-formed alternate bars highly depend on the water discharge with respect to the relevant theoretical thresholds. This work provides fundamental information for predicting the response of rivers to natural or human alterations of the flow regime.