Articles | Volume 9, issue 2
https://doi.org/10.5194/esurf-9-379-2021
https://doi.org/10.5194/esurf-9-379-2021
Research article
 | 
26 Apr 2021
Research article |  | 26 Apr 2021

Controls on the hydraulic geometry of alluvial channels: bank stability to gravitational failure, the critical-flow hypothesis, and conservation of mass and energy

Jon D. Pelletier

Related authors

Quantifying the controls on potential soil production rates: a case study of the San Gabriel Mountains, California
Jon D. Pelletier
Earth Surf. Dynam., 5, 479–492, https://doi.org/10.5194/esurf-5-479-2017,https://doi.org/10.5194/esurf-5-479-2017, 2017
Short summary
A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input
Christopher Shepard, Marcel G. Schaap, Jon D. Pelletier, and Craig Rasmussen
SOIL, 3, 67–82, https://doi.org/10.5194/soil-3-67-2017,https://doi.org/10.5194/soil-3-67-2017, 2017
Short summary
Constraining frequency–magnitude–area relationships for rainfall and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River basins, USA
Caitlin A. Orem and Jon D. Pelletier
Hydrol. Earth Syst. Sci., 20, 4483–4501, https://doi.org/10.5194/hess-20-4483-2016,https://doi.org/10.5194/hess-20-4483-2016, 2016
Short summary
The influence of Holocene vegetation changes on topography and erosion rates: a case study at Walnut Gulch Experimental Watershed, Arizona
Jon D. Pelletier, Mary H. Nichols, and Mark A. Nearing
Earth Surf. Dynam., 4, 471–488, https://doi.org/10.5194/esurf-4-471-2016,https://doi.org/10.5194/esurf-4-471-2016, 2016
Short summary
Predicting the roughness length of turbulent flows over landscapes with multi-scale microtopography
Jon D. Pelletier and Jason P. Field
Earth Surf. Dynam., 4, 391–405, https://doi.org/10.5194/esurf-4-391-2016,https://doi.org/10.5194/esurf-4-391-2016, 2016
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Linear-stability analysis of plane beds under flows with suspended loads
Koji Ohata, Hajime Naruse, and Norihiro Izumi
Earth Surf. Dynam., 11, 961–977, https://doi.org/10.5194/esurf-11-961-2023,https://doi.org/10.5194/esurf-11-961-2023, 2023
Short summary
Estimating surface water availability in high mountain rock slopes using a numerical energy balance model
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023,https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Sediment source and sink identification using Sentinel-2 and a small network of turbidimeters on the Vjosa River
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
Earth Surf. Dynam., 11, 881–897, https://doi.org/10.5194/esurf-11-881-2023,https://doi.org/10.5194/esurf-11-881-2023, 2023
Short summary
Spatiotemporal bedload transport patterns over two-dimensional bedforms
Kate C. P. Leary, Leah Tevis, and Mark Schmeeckle
Earth Surf. Dynam., 11, 835–847, https://doi.org/10.5194/esurf-11-835-2023,https://doi.org/10.5194/esurf-11-835-2023, 2023
Short summary
Ice-buttressing-controlled rock slope failure on a cirque headwall, Lake District, UK
Paul A. Carling, John D. Jansen, Teng Su, Jane Lund Andersen, and Mads Faurschou Knudsen
Earth Surf. Dynam., 11, 817–833, https://doi.org/10.5194/esurf-11-817-2023,https://doi.org/10.5194/esurf-11-817-2023, 2023
Short summary

Cited articles

Andrews, E. D.: Bank stability and channel width adjustment, East Fork River, Wyoming, Water Resour. Res., 18, 1184–1192, https://doi.org/10.1029/WR018i004p01184, 1982. 
Archuleta, C. M., Constance, E. W., Arundel, S. T., Lowe, A. J., Mantey, K. S., and Phillips, L. A.: The National Map seamless digital elevation model specifications, U.S. Geological Survey Techniques and Methods, 11, B9, https://doi.org/10.3133/tm11B9, 2017. 
ASCE: Task Committee on Hydraulics, Bank Mechanics, and Modeling of River Width Adjustment, River width adjustment, 1. Processes and mechanisms, J. Hydraul. Eng., 124, 881–902, 1998. 
Attal, M., Mudd, S. M., Hurst, M. D., Weinman, B., Yoo, K., and Naylor, M.: Impact of change in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the Feather River basin (Sierra Nevada, California), Earth Surf. Dynam., 3, 201–222, https://doi.org/10.5194/esurf-3-201-2015, 2015. 
Bathurst, J. C.: Flow resistance through the channel network, in: Channel Network Hydrology, edited by: Beven, K., and Kirkby, M. J., Wiley, Chichester, U.K., 43–68, 1993. 
Download
Short summary
The sizes and shapes of alluvial channels vary in a systematic way with the water flow they convey during large floods. It is demonstrated that the depth of alluvial channels is controlled by the resistance of channel bank material to slumping, which in turn is controlled by clay content. Deeper channels have faster water flow in a manner controlled by the critical hydraulic state to which channels tend to evolve. Channel width and slope can be further quantified using conservation principles.