Articles | Volume 11, issue 6
https://doi.org/10.5194/esurf-11-1061-2023
https://doi.org/10.5194/esurf-11-1061-2023
Research article
 | 
01 Nov 2023
Research article |  | 01 Nov 2023

Automated riverbed composition analysis using deep learning on underwater images

Alexander A. Ermilov, Gergely Benkő, and Sándor Baranya

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024,https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024,https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Role of the forcing sources in morphodynamic modelling of an embayed beach
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024,https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024,https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024,https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary

Cited articles

Adams, J.: Gravel Size Analysis from Photographs, J. Hydraul. Div., 1979, 105, 1247–1255, https://doi.org/10.1061/JYCEAJ.0005283, 1979. 
Baranya, S., Fleit, G., Józsa, J., Szalóky, Z., Tóth, B., Czeglédi, I., and Erős, T.: Habitat mapping of riverine fish by means of hydromorphological tools, Ecohydrology, 11, e2009, https://doi.org/10.1002/eco.2009, 2018. 
Barnard, P., Rubin, D., Harney, J., and Mustain, N.: Field test comparison of an autocorrelation technique for determining grain size using a digital beachball camera versus traditional methods, Sediment. Geol., 201, 180–195, 2007. 
Benjankar, R., Tonina, D., and Mckean, J.: One-dimensional and two-dimensional hydrodynamic modelling derived flow properties: Impacts on aquatic habitat quality predictions, Earth Surf. Proc. Land., 40, 340–356, 2015. 
Benkő, G., Baranya, S., Török, T. G., and Molnár, B.: Folyami mederanyag szemösszetételének vizsgálata Mély Tanulás eljárással drónfelvételek alapján (in English: Analysis of composition of riverbed material with Deep Learning based on drone video footages), Hidrológiai Közlöny, 100, 61–69, 2020. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
A novel, artificial-intelligence-based riverbed sediment analysis methodology is introduced that uses underwater images to identify the characteristic sediment classes. The main novelties of the procedure are as follows: underwater images are used, the method enables continuous mapping of the riverbed along the measurement vessel’s route contrary to conventional techniques, the method is cost-efficient, and the method works without scaling.