Articles | Volume 11, issue 3
https://doi.org/10.5194/esurf-11-405-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-11-405-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of human modifications on material transport in deltas
Jayaram Hariharan
Department of Civil, Architectural and Environmental Engineering, Center for Water and the Environment, University of Texas at Austin, Austin, Texas, USA
Kyle Wright
Department of Civil, Architectural and Environmental Engineering, Center for Water and the Environment, University of Texas at Austin, Austin, Texas, USA
Andrew Moodie
Department of Civil, Architectural and Environmental Engineering, Center for Water and the Environment, University of Texas at Austin, Austin, Texas, USA
Nelson Tull
Department of Civil, Architectural and Environmental Engineering, Center for Water and the Environment, University of Texas at Austin, Austin, Texas, USA
Paola Passalacqua
CORRESPONDING AUTHOR
Department of Civil, Architectural and Environmental Engineering, Center for Water and the Environment, University of Texas at Austin, Austin, Texas, USA
Related authors
No articles found.
Matthew Preisser, Paola Passalacqua, R. Patrick Bixler, and Julian Hofmann
Hydrol. Earth Syst. Sci., 26, 3941–3964, https://doi.org/10.5194/hess-26-3941-2022, https://doi.org/10.5194/hess-26-3941-2022, 2022
Short summary
Short summary
There is rising concern in numerous fields regarding the inequitable distribution of human risk to floods. The co-occurrence of river and surface flooding is largely excluded from leading flood hazard mapping services, therefore underestimating hazards. Using high-resolution elevation data and a region-specific social vulnerability index, we developed a method to estimate flood impacts at the household level in near-real time.
Cited articles
Al Masud, M. M., Gain, A. K., and Azad, A. K.: Tidal river management for sustainable agriculture in the Ganges-Brahmaputra delta: Implication for land use policy, Land Use Policy, 92, 104443, https://doi.org/10.1016/j.landusepol.2019.104443, 2020. a
Angamuthu, B., Darby, S. E., and Nicholls, R. J.: Impacts of natural and human drivers on the multi-decadal morphological evolution of tidally-influenced deltas, P. Roy. Soc. A-Math. Phy., 474, 20180396, https://doi.org/10.1098/rspa.2018.0396, 2018. a, b
Anthony, E. J.: Wave influence in the construction, shaping and destruction of river deltas: A review, Mar. Geol., 361, 53–78, https://doi.org/10.1016/j.margeo.2014.12.004, 2015. a, b
Auerbach, L. W., Goodbred Jr., S. L., Mondal, D. R., Wilson, C. A., Ahmed, K. R., Roy, K., Steckler, M. S., Small, C., Gilligan, J. M., and Ackerly, B. A.: Flood risk of natural and embanked landscapes on the Ganges–Brahmaputra tidal delta plain, Nat. Clim. Change, 5, 153–157, https://doi.org/10.1038/nclimate2472, 2015. a, b
Bain, R. L., Hale, R. P., and Goodbred, S. L.: Flow Reorganization in an Anthropogenically Modified Tidal Channel Network: An Example From the Southwestern Ganges-Brahmaputra-Meghna Delta, J. Geophys. Res.-Earth, 124, 2141–2159, https://doi.org/10.1029/2018JF004996, 2019. a, b
Banas, N. S., MacCready, P., and Hickey, B. M.: The Columbia River plume as cross-shelf exporter and along-coast barrier, Cont. Shelf Res., 29, 292–301, https://doi.org/10.1016/j.csr.2008.03.011, 2009. a
Bates, P. D.: Flood Inundation Prediction, Annu. Rev. Fluid Mech., 54, 287–315, https://doi.org/10.1146/annurev-fluid-030121-113138, 2022. a
Cai, H., Savenije, H. H. G., Yang, Q., Ou, S., and Lei, Y.: Influence of River Discharge and Dredging on Tidal Wave Propagation: Modaomen Estuary Case, J. Hydraul. Eng., 138, 885–896, https://doi.org/10.1061/(asce)hy.1943-7900.0000594, 2012. a, b
Chamberlain, E. L., Shen, Z., Kim, W., McKinley, S., Anderson, S., and Törnqvist, T. E.: Does Load-Induced Shallow Subsidence Inhibit Delta Growth?, J. Geophys. Res.-Earth, 126, e2021JF006153, https://doi.org/10.1029/2021JF006153, 2021. a
Chow, V. T.: Open-channel hydraulics, McGraw-Hill civil engineering series, McGraw-Hill, 1959. a
Christensen, A., Twilley, R. R., Willson, C. S., and Castañeda-Moya, E.: Simulating hydrological connectivity and water age within a coastal deltaic floodplain of the Mississippi River Delta, Estuar. Coast. Shelf S., 245, 106995, https://doi.org/10.1016/j.ecss.2020.106995, 2020. a, b
Dagestad, K.-F., Röhrs, J., Breivik, Ø., and Ådlandsvik, B.: OpenDrift v1.0: a generic framework for trajectory modelling, Geosci. Model Dev., 11, 1405–1420, https://doi.org/10.5194/gmd-11-1405-2018, 2018. a
Day, J. W., Britsch, L. D., Hawes, S. R., Shaffer, G. P., Reed, D. J., and Cahoon, D.: Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change, Estuaries, 23, 425–438, https://doi.org/10.2307/1353136, 2000. a, b
Day, J. W., Gunn, J. D., Folan, W. J., Yáñez-Arancibia, A., and Horton, B. P.: Emergence of complex societies after sea level stabilized, Eos T. Am. Geophys. Un., 88, 169–170, https://doi.org/10.1029/2007EO150001, 2007. a
de Brauwere, A., de Brye, B., Blaise, S., and Deleersnijder, E.: Residence time, exposure time and connectivity in the Scheldt Estuary, J. Marine Syst., 84, 85–95, https://doi.org/10.1016/j.jmarsys.2010.10.001, 2011. a
Durand, J. R.: Evaluating the aquatic habitat potential of flooded polders in the Sacramento-San Joaquin Delta, San Francisco Estuary and Watershed Science, 15, 4, https://doi.org/10.15447/sfews.2017v15iss4art4, 2017. a
Edmonds, D. A. and Slingerland, R. L.: Significant effect of sediment cohesion on deltamorphology, Nat. Geosci., 3, 105–109, https://doi.org/10.1038/ngeo730, 2010. a, b
Edmonds, D. A., Paola, C., Hoyal, D. C., and Sheets, B. A.: Quantitative metrics that describe river deltas and their channel networks, J. Geophys. Res.-Earth, 116, F04022, https://doi.org/10.1029/2010JF001955, 2011. a
Edmonds, D. A., Caldwell, R. L., Brondizio, E. S., and Siani, S. M.: Coastal flooding will disproportionately impact people on river deltas, Nat. Commun., 11, 1–8, https://doi.org/10.1038/s41467-020-18531-4, 2020. a
Ellery, W. N. and McCarthy, T. S.: Environmental change over two decades since dredging and excavation of the lower Boro River, Okavango Delta, Botswana, J. Biogeogr., 25, 361–378, https://doi.org/10.1046/j.1365-2699.1998.252168.x, 1998. a, b
Esposito, C. R., Georgiou, I. Y., and Straub, K. M.: Flow Loss in Deltaic Distributaries: Impacts on Channel Hydraulics, Morphology, and Stability, Water Resour. Res., 56, e2019WR026463, https://doi.org/10.1029/2019WR026463, 2020. a
Geleynse, N., Storms, J. E., Walstra, D. J. R., Jagers, H. R., Wang, Z. B., and Stive, M. J.: Controls on river delta formation; insights from numerical modelling, Earth Planet. Sc. Lett., 302, 217–226, https://doi.org/10.1016/j.epsl.2010.12.013, 2011. a
Hariharan, J., Xu, Z., Michael, H. A., Paola, C., Steel, E., and Passalacqua, P.: Linking the Surface and Subsurface in River Deltas – Part 1: Relating Surface and Subsurface Geometries, Water Resour. Res., 57, e2020WR029282, https://doi.org/10.1029/2020WR029282, 2021. a, b, c, d
Hariharan, J., Wright, K., and Passalacqua, P.: dorado v2.5.1, Zenodo [code], https://doi.org/10.5281/zenodo.6454729, 2022a. a
Hariharan, J., Wright, K., Moodie, A., Tull, N., and Passalacqua, P.: Videos For Impacts of Human Modifications on Material Transport in Deltas, OSF [video supplement], https://doi.org/10.17605/OSF.IO/D95ZN, 2022b. a
Hiatt, M. and Passalacqua, P.: Hydrological connectivity in river deltas: The first-order importance of channel-island exchange, Water Resour. Res., 51, 2264–2282, https://doi.org/10.1002/2014WR016149, 2015. a, b
Higgins, S. A., Overeem, I., Rogers, K. G., and Kalina, E. A.: River linking in India: Downstream impacts on water discharge and suspended sediment transport to deltas, Elementa, 6, 20, https://doi.org/10.1525/elementa.269, 2018. a
Hoyal, D. C. and Sheets, B. A.: Morphodynamic evolution of experimental cohesive deltas, J. Geophys. Res.-Earth, 114, 2009, https://doi.org/10.1029/2007JF000882, 2009. a
Kain, C. L., Lewarn, B., Rigby, E. H., and Mazengarb, C.: Tsunami Inundation and Maritime Hazard Modelling for a Maximum Credible Tsunami Scenario in Southeast Tasmania, Australia, Pure Appl. Geophys., 177, 1549–1568, https://doi.org/10.1007/s00024-019-02384-0, 2020. a
Kerner, M.: Effects of deepening the Elbe Estuary on sediment regime and water quality, Estuar. Coast. Shelf S., 75, 492–500, https://doi.org/10.1016/j.ecss.2007.05.033, 2007. a
Khadim, F. K., Kar, K. K., Halder, P. K., Rahman, M. A., and Morshed, A. M.: Integrated Water Resources Management (IWRM) Impacts in South West Coastal Zone of Bangladesh and Fact-Finding on Tidal River Management (TRM), Journal of Water Resource and Protection, 5, 953–961, https://doi.org/10.4236/jwarp.2013.510098, 2013. a
Kim, W., Mohrig, D., Twilley, R. R., Paola, C., and Parker, G.: Is it feasible to build new land in the Mississippi River delta?, Eos T. Am. Geophys. Un., 90, 373–374, 2009. a
Knights, D., Sawyer, A. H., Barnes, R. T., Piliouras, A., Schwenk, J., Edmonds, D. A., and Brown, A. M.: Nitrate Removal Across Ecogeomorphic Zones in Wax Lake Delta, Louisiana (USA), Water Resour. Res., 56, e2019WR026867, https://doi.org/10.1029/2019WR026867, 2020. a, b
Knights, D., Sawyer, A. H., Edmonds, D. A., Olliver, E. A., and Barnes, R. T.: The relationship between delta form and nitrate retention revealed by numerical modeling experiments, Water Resour. Res., 57, e2021WR030974, https://doi.org/10.1029/2021WR030974, 2021. a
Lauzon, R., Piliouras, A., and Rowland, J. C.: Ice and Permafrost Effects on Delta Morphology and Channel Dynamics, Geophys. Res. Lett., 46, 6574–6582, https://doi.org/10.1029/2019GL082792, 2019. a, b, c
Le, T. V. H., Nguyen, H. N., Wolanski, E., Tran, T. C., and Haruyama, S.: The combined impact on the flooding in Vietnam's Mekong River delta of local man-made structures, sea level rise, and dams upstream in the river catchment, Estuar. Coast. Shelf S., 71, 110–116, https://doi.org/10.1016/j.ecss.2006.08.021, 2007. a
Lexartza-Artza, I. and Wainwright, J.: Hydrological connectivity: Linking concepts with practical implications, Catena, 79, 146–152, https://doi.org/10.1016/j.catena.2009.07.001, 2009. a
Liang, M., Kim, W., and Passalacqua, P.: How much subsidence is enough to change the morphology of river deltas?, Geophys. Res. Lett., 43, 10266–10276, https://doi.org/10.1002/2016GL070519, 2016a. a, b
Maneewongvatana, S. and Mount, D. M.: Analysis of approximate nearest neighbor searching with clustered point sets, arXiv [preprint], https://doi.org/10.48550/arXiv.cs/9901013, 1999. a
Masud, M. M. A., Moni, N. N., Azadi, H., and Van Passel, S.: Sustainability impacts of tidal river management: Towards a conceptual framework, Ecol. Indic., 85, 451–467, https://doi.org/10.1016/j.ecolind.2017.10.022, 2018. a
Monge-Ganuzas, M., Cearreta, A., and Evans, G.: Morphodynamic consequences of dredging and dumping activities along the lower Oka estuary (Urdaibai Biosphere Reserve, southeastern Bay of Biscay, Spain), Ocean Coast. Manage., 77, 40–49, https://doi.org/10.1016/j.ocecoaman.2012.02.006, 2013. a
Moodie, A., Hariharan, J., Barefoot, E., and Passalacqua, P.: pyDeltaRCM: a flexible numerical delta model, Journal of Open Source Software, 6, 3398, https://doi.org/10.21105/joss.03398, 2021. a, b
Moodie, A. J. and Passalacqua, P.: When Does Faulting-Induced Subsidence Drive Distributary Network Reorganization?, Geophys. Res. Lett., 48, e2021GL095053, https://doi.org/10.1029/2021GL095053, 2021. a, b
Moodie, A. J., Hariharan, J., Barefoot, E., and Passalacqua, P.: pyDeltaRCM
v2.1.4, GitHub [code], https://github.com/DeltaRCM/pyDeltaRCM/releases/tag/v2.1.4 (last access: August 2022), 2022. a
Mossa, J. and Chen, Y. H.: Geomorphic insights from eroding dredge spoil mounds impacting channel morphology, Geomorphology, 376, 107571, https://doi.org/10.1016/j.geomorph.2020.107571, 2021. a
Nardin, W., Edmonds, D. A., and Fagherazzi, S.: Influence of vegetation on spatial patterns of sediment deposition in deltaic islands during flood, Adv. Water Resour., 93, 236–248, https://doi.org/10.1016/j.advwatres.2016.01.001, 2016. a
Olliver, E. A. and Edmonds, D. A.: Defining the ecogeomorphic succession of land building for freshwater, intertidal wetlands in Wax Lake Delta, Louisiana, Estuar. Coast. Shelf S., 196, 45–57, 2017. a
Olliver, E. A. and Edmonds, D. A.: Hydrological Connectivity Controls Magnitude and Distribution of Sediment Deposition Within the Deltaic Islands of Wax Lake Delta, LA, USA, J. Geophys. Res.-Earth, 126, e2021JF006136, https://doi.org/10.1029/2021JF006136, 2021. a
Olliver, E. A., Edmonds, D. A., and Shaw, J. B.: Influence of Floods, Tides, and Vegetation on Sediment Retention in Wax Lake Delta, Louisiana, USA, J. Geophys. Res.-Earth, 125, e2019JF005316, https://doi.org/10.1029/2019JF005316, 2020. a
Olson, K. R. and Wright Morton, L.: Polders, dikes, canals, rice, and aquaculture in the Mekong Delta, Journal of Soil and Water Conservation, 73, 83A–89A, https://doi.org/10.2489/jswc.73.4.83A, 2018. a
Passalacqua, P.: The Delta Connectome: A network-based framework for studying connectivity in river deltas, Geomorphology, 277, 50–62, https://doi.org/10.1016/j.geomorph.2016.04.001, 2017. a
Passalacqua, P., Giosan, L., Goodbred, S., and Overeem, I.: Stable ≠ Sustainable: Delta dynamics versus the human need for stability, Earths Future, e2021EF002121, https://doi.org/10.1029/2021EF002121, 2021. a
Pethick, J. and Orford, J. D.: Rapid rise in effective sea-level in southwest Bangladesh: Its causes and contemporary rates, Global Planet. Change, 111, 237–245, https://doi.org/10.1016/j.gloplacha.2013.09.019, 2013. a
Piliouras, A., Kim, W., and Carlson, B.: Balancing Aggradation and Progradation on a Vegetated Delta: The Importance of Fluctuating Discharge in Depositional Systems, J. Geophys. Res.-Earth, 122, 1882–1900, https://doi.org/10.1002/2017JF004378, 2017. a
Piliouras, A., Lauzon, R., and Rowland, J. C.: Unraveling the Combined Effects of Ice and Permafrost on Arctic Delta Morphodynamics, J. Geophys. Res.-Earth, 126, e2020JF005706, https://doi.org/10.1029/2020JF005706, 2021. a, b
Pringle, C.: The need for a more predictive understanding of hydrologic connectivity, Aquat. Conserv., 13, 467–471, https://doi.org/10.1002/aqc.603, 2003. a
Proehl, J. A., Bilgili, A., Lynch, D. R., Smith, K., and Robinson Swift, M.: The use of Lagrangian particle methods to investigate ocean-estuary exchange in well-mixed estuaries, Dev. Water Sci., 55, 1825–1837, https://doi.org/10.1016/S0167-5648(04)80188-6, 2004. a
Renaud, F. G., Syvitski, J. P., Sebesvari, Z., Werners, S. E., Kremer, H., Kuenzer, C., Ramesh, R., Jeuken, A., and Friedrich, J.: Tipping from the Holocene to the Anthropocene: How threatened are major world deltas?, Curr. Opin. Env. Sust., 5, 644–654, https://doi.org/10.1016/j.cosust.2013.11.007, 2013. a, b
Roberts, S.: ANUGA, GitHub [code], https://github.com/GeoscienceAustralia/anuga_core/releases/tag/3.1.3 (last access: August 2022), 2022. a
Roberts, S. G., Stals, L., and Nielsen, O. M.: Parallelisation of a finite volume method for hydrodynamic inundation modelling, ANZIAM J., 49, 558, https://doi.org/10.21914/anziamj.v48i0.153, 2007. a
Samuelson, B. M.: The Effect of Flood Embankments on the River-Levels in the Irrawaddy Delta (ABRIDGES), in: Minutes of the Proceedings of the Institution of Civil Engineers, vol. 203, Thomas Telford-ICE Virtual Library, 362–370, https://doi.org/10.1680/imotp.1917.15886, 1917. a
Sassi, M. G., Hoitink, A. J., De Brye, B., Vermeulen, B., and Deleersnijder, E.: Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta, Ocean Dynam., 61, 2211–2228, https://doi.org/10.1007/s10236-011-0473-9, 2011. a
Sassi, M. G., Hoitink, A. J., De Brye, B., and Deleersnijder, E.: Downstream hydraulic geometry of a tidally influenced river delta, J. Geophys. Res.-Earth, 117, 4022, https://doi.org/10.1029/2012JF002448, 2012. a
Sendrowski, A. and Passalacqua, P.: Process connectivity in a naturally prograding river delta, Water Resour. Res., 53, 1841–1863, https://doi.org/10.1002/2016WR019768, 2017. a
Serra, J. P.: Image analysis and mathematical morphology, Academic Press, London, https://doi.org/10.1002/cyto.990040213, 1982. a
Shaw, J. B., Wolinsky, M. A., Paola, C., and Voller, V. R.: An image-based method for shoreline mapping on complex coasts, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL033963, 2008. a, b
Shaw, J. B., Mohrig, D., and Whitman, S. K.: The morphology and evolution of channels on the Wax Lake Delta, Louisiana, USA, J. Geophys. Res.-Earth, 118, 1562–1584, 2013. a
Shaw, J. B., Mohrig, D., and Wagner, R. W.: Flow patterns and morphology of a prograding river delta, J. Geophys. Res.-Earth, 121, 372–391, https://doi.org/10.1002/2015JF003570, 2016. a
Simeoni, U. and Corbau, C.: A review of the Delta Po evolution (Italy) related to climatic changes and human impacts, Geomorphology, 107, 64–71, https://doi.org/10.1016/j.geomorph.2008.11.004, 2009. a
Straub, K. M., Li, Q., and Benson, W. M.: Influence of sediment cohesion on deltaic shoreline dynamics and bulk sediment retention: A laboratory study, Geophys. Res. Lett., 42, 9808–9815, https://doi.org/10.1002/2015GL066131, 2015. a, b
Temmerman, S. and Kirwan, M. L.: Building land with a rising sea, Science, 349, 588–589, 2015. a
Tetzlaff, D., Soulsby, C., Bacon, P. J., Youngson, A. F., Gibbins, C., and Malcolm, I. A.: Connectivity between landscapes and riverscapes – A unifying theme in integrating hydrology and ecology in catchment science?, Hydrol. Process., 21, 1385–1389, https://doi.org/10.1002/hyp.6701, 2007. a
Tull, N., Passalacqua, P., Hassenruck-Gudipati, H. J., Rahman, S., Wright, K., Hariharan, J., and Mohrig, D.: Bidirectional River-Floodplain Connectivity During Combined Pluvial-Fluvial Events, Water Resour. Res., 58, e2021WR030492, https://doi.org/10.1029/2021wr030492, 2022. a, b
Vale, L. M. and Dias, J. M.: Coupling of a Lagrangian particle tracking module to a numerical hydrodynamic model: Simulation of pollution events inside an estuarine port area, J. Coastal Res., 64, 1609–1613, 2011. a
Valseth, E., Loveland, M. D., Dawson, C., and Buskey, E. J.: A study of the potential impact of dredging the corpus christi ship channel on passive particle transport, Journal of Marine Science and Engineering, 9, 935, https://doi.org/10.3390/jmse9090935, 2021. a, b
van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J. D., Yager, N., Gouillart, E., Yu, T., and the scikit-image contributors. scikit-image: Image processing in Python, Peer J., 2, e453 , https://doi.org/10.7717/peerj.453, 2014. a
van Dijk, W. M., Cox, J. R., Leuven, J. R., Cleveringa, J., Taal, M., Hiatt, M. R., Sonke, W., Verbeek, K., Speckmann, B., and Kleinhans, M. G.: The vulnerability of tidal flats and multi-channel estuaries to dredging and disposal, Anthropocene Coasts, 4, 36–60, https://doi.org/10.1139/anc-2020-0006, 2021. a, b, c
Viero, D. P. and Defina, A.: Water age, exposure time, and local flushing time in semi-enclosed, tidal basins with negligible freshwater inflow, J. Marine Syst., 156, 16–29, https://doi.org/10.1016/j.jmarsys.2015.11.006, 2016. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wang, X., Zhang, W., Yin, J., Wang, J., Ge, J., Wu, J., Luo, W., and Lam, N. S.: Assessment of coastal erosion vulnerability and socio-economic impact along the Yangtze River Delta, Ocean Coast. Manage., 215, 105953, https://doi.org/10.1016/j.ocecoaman.2021.105953, 2021. a
Wesselink, A., Warner, J. F., Syed, M. A., Chan, F., Tran, D. D., Huq, H.,
Huthoff, F., Le Thuy, N., Pinter, N., van Staveren, M. F., Wester, P., and
Zegwaard, A.: Trends in flood risk management in deltas around the world: Are we going “soft”?, International Journal of Water Governance, 3, 25–46, 2015. a
Wilson, C., Goodbred, S., Small, C., Gilligan, J., Sams, S., Mallick, B., and Hale, R.: Widespread infilling of tidal channels and navigable waterways in the human-modified tidal deltaplain of southwest Bangladesh, Elementa, 5, 78, https://doi.org/10.1525/elementa.263, 2017.
a, b, c, d
Wright, K., Hiatt, M., and Passalacqua, P.: Hydrological Connectivity in Vegetated River Deltas: The Importance of Patchiness Below a Threshold, Geophys. Res. Lett., 45, 10416–10427, https://doi.org/10.1029/2018GL079183, 2018. a
Wright, K., Hariharan, J., Passalacqua, P., Salter, G., and Lamb, M. P.: From Grains to Plastics: Modeling Nourishment Patterns and Hydraulic Sorting of Fluvially Transported Materials in Deltas, J. Geophys. Res.-Earth, 127, e2022JF006769, https://doi.org/10.1029/2022JF006769, 2022a. a, b, c, d, e, f, g
Wright, K., Passalacqua, P., Simard, M., and Jones, C. E.: Integrating Connectivity Into Hydrodynamic Models: An Automated Open-Source Method to Refine an Unstructured Mesh Using Remote Sensing, J. Adv. Model. Earth Sy., 14, e2022MS003025, https://doi.org/10.1029/2022MS003025, 2022b. a, b, c, d, e, f
Yuan, R. and Zhu, J.: The Effects of Dredging on Tidal Range and Saltwater Intrusion in the Pearl River Estuary, J. Coastal Res., 31, 1357–1362, https://doi.org/10.2112/JCOASTRES-D-14-00224.1, 2015. a, b, c, d
Zhu, J., Weisberg, R. H., Zheng, L., and Han, S.: Influences of Channel Deepening and Widening on the Tidal and Nontidal Circulations of Tampa Bay, Estuar. Coast., 38, 132–150, https://doi.org/10.1007/s12237-014-9815-4, 2015. a
Zoccarato, C., Minderhoud, P. S., and Teatini, P.: The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam, Sci. Rep.-UK, 8, 1–12, https://doi.org/10.1038/s41598-018-29734-7, 2018. a
Short summary
We simulate the transport of material through numerically simulated river deltas under natural and human-modified (embankment construction and channel dredging) scenarios to understand their impacts on material transport. Human modifications reduce the total area visited by passive particles and alter the amount of time spent within the delta relative to natural conditions. This work can help us understand how future construction may impact land building or ecosystem restoration projects.
We simulate the transport of material through numerically simulated river deltas under natural...