Articles | Volume 12, issue 1
https://doi.org/10.5194/esurf-12-1-2024
https://doi.org/10.5194/esurf-12-1-2024
Research article
 | 
03 Jan 2024
Research article |  | 03 Jan 2024

Stochastic properties of coastal flooding events – Part 1: convolutional-neural-network-based semantic segmentation for water detection

Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent

Related authors

Stochastic properties of coastal flooding events – Part 2: Probabilistic analysis
Byungho Kang, Rusty A. Feagin, Thomas Huff, and Orencio Durán Vinent
Earth Surf. Dynam., 12, 105–115, https://doi.org/10.5194/esurf-12-105-2024,https://doi.org/10.5194/esurf-12-105-2024, 2024
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024,https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024,https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Role of the forcing sources in morphodynamic modelling of an embayed beach
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024,https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024,https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024,https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary

Cited articles

Alvarez-Ellacuria, A., Orfila, A., Gómez-Pujol, L., Simarro, G., and Obregon, N.: Decoupling spatial and temporal patterns in short-term beach shoreline response to wave climate, Geomorphology, 128, 199–208, https://doi.org/10.1016/j.geomorph.2011.01.008, 2011. a
Battjes, J. A.: Surf Similarity, Coastal Engineering Proceedings, 1, 26, https://doi.org/10.9753/icce.v14.26, 1974. a
Bengio, Y.: Deep Learning of Representations for Unsupervised and Transfer Learning, Proceedings of Machine Learning Research, 27, 17–36, http://proceedings.mlr.press/v27/bengio12a.html (last access: 20 December 2023), 2012. a
Buscombe, D. and Ritchie, A.: Landscape Classification with Deep Neural Networks, Geosciences, 8, 244, https://doi.org/10.3390/geosciences8070244, 2018. a
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L.: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, arXiv [preprint], https://doi.org/10.48550/arXiv.1606.00915, 2016. a, b
Short summary
Coastal flooding can cause significant damage to coastal ecosystems, infrastructure, and communities and is expected to increase in frequency with the acceleration of sea level rise. In order to respond to it, it is crucial to measure and model their frequency and intensity. Here, we show deep-learning techniques can be successfully used to automatically detect flooding events from complex coastal imagery, opening the way to real-time monitoring and data acquisition for model development.