Articles | Volume 12, issue 1
https://doi.org/10.5194/esurf-12-67-2024
https://doi.org/10.5194/esurf-12-67-2024
Research article
 | 
09 Jan 2024
Research article |  | 09 Jan 2024

Field monitoring of pore water pressure in fully and partly saturated debris flows at Ohya landslide scar, Japan

Shunsuke Oya, Fumitoshi Imaizumi, and Shoki Takayama

Related authors

Morphological characteristics and conditions of drainage basins contributing to the formation of debris flow fans: an examination of regions with different rock strength using decision tree analysis
Ken'ichi Koshimizu, Satoshi Ishimaru, Fumitoshi Imaizumi, and Gentaro Kawakami
Nat. Hazards Earth Syst. Sci., 24, 1287–1301, https://doi.org/10.5194/nhess-24-1287-2024,https://doi.org/10.5194/nhess-24-1287-2024, 2024
Short summary
Temporal changes in the debris flow threshold under the effects of ground freezing and sediment storage on Mt. Fuji
Fumitoshi Imaizumi, Atsushi Ikeda, Kazuki Yamamoto, and Okihiro Ohsaka
Earth Surf. Dynam., 9, 1381–1398, https://doi.org/10.5194/esurf-9-1381-2021,https://doi.org/10.5194/esurf-9-1381-2021, 2021
Short summary
Forest harvesting impacts on microclimate conditions and sediment transport activities in a humid periglacial environment
Fumitoshi Imaizumi, Ryoko Nishii, Kenichi Ueno, and Kousei Kurobe
Hydrol. Earth Syst. Sci., 23, 155–170, https://doi.org/10.5194/hess-23-155-2019,https://doi.org/10.5194/hess-23-155-2019, 2019
Short summary
Relationship between the accumulation of sediment storage and debris-flow characteristics in a debris-flow initiation zone, Ohya landslide body, Japan
Fumitoshi Imaizumi, Yuichi S. Hayakawa, Norifumi Hotta, Haruka Tsunetaka, Okihiro Ohsaka, and Satoshi Tsuchiya
Nat. Hazards Earth Syst. Sci., 17, 1923–1938, https://doi.org/10.5194/nhess-17-1923-2017,https://doi.org/10.5194/nhess-17-1923-2017, 2017
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
A physics-based model for fluvial valley width
Jens Martin Turowski, Aaron Bufe, and Stefanie Tofelde
Earth Surf. Dynam., 12, 493–514, https://doi.org/10.5194/esurf-12-493-2024,https://doi.org/10.5194/esurf-12-493-2024, 2024
Short summary
Implications for the resilience of modern coastal systems derived from mesoscale barrier dynamics at Fire Island, New York
Daniel J. Ciarletta, Jennifer L. Miselis, Julie C. Bernier, and Arnell S. Forde
Earth Surf. Dynam., 12, 449–475, https://doi.org/10.5194/esurf-12-449-2024,https://doi.org/10.5194/esurf-12-449-2024, 2024
Short summary
Quantifying the migration rate of drainage divides from high-resolution topographic data
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024,https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Long-term monitoring (1953–2019) of geomorphologically active sections of Little Ice Age lateral moraines in the context of changing meteorological conditions
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024,https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Coevolving edge rounding and shape of glacial erratics: the case of Shap granite, UK
Paul A. Carling
Earth Surf. Dynam., 12, 381–397, https://doi.org/10.5194/esurf-12-381-2024,https://doi.org/10.5194/esurf-12-381-2024, 2024
Short summary

Cited articles

Abe, K. and Konagai, K.: Numerical simulation for runout process of debris flow using depth-averaged material point method, Soils Found., 56, 869–888, https://doi.org/10.1016/j.sandf.2016.08.011, 2016. 
Arattano, M., Marchi, L., and Cavalli, M.: Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings, Nat. Hazards Earth Syst. Sci., 12, 679–686, https://doi.org/10.5194/nhess-12-679-2012, 2012. 
Bennett, G., Molnar, P., McArdell, B., Schlunegger, F., and Burlando, P.: Patterns and controls of sediment production, transfer and yield in the Illgraben, Geomorphology, 188, 68–82, https://doi.org/10.1016/j.geomorph.2012.11.029, 2013. 
Berger, C., McArdell, B. W., and Schlunegger, F.: Direct measurement of channel erosion by debris flows, Illgraben, Switzerland, J. Geophys. Res., 116, F01002, https://doi.org/10.1029/2010JF001722, 2011. 
Berti, M., Genevois, R., LaHusen, R., Simoni, A., and Tecca, P. R.: Debris flow monitoring in the acquabona watershed on the Dolomites (Italian alps), Phys. Chem. Earth Pt. B, 25, 707–715, https://doi.org/10.1016/S1464-1909(00)00090-3, 2000. 
Download
Short summary
The monitoring of pore water pressure in fully and partly saturated debris flows was performed at Ohya landslide scar, central Japan. The pore water pressure in some partly saturated flows greatly exceeded the hydrostatic pressure. The depth gradient of the pore water pressure in the lower part of the flow was generally higher than the upper part of the flow. We conclude that excess pore water pressure is present in many debris flow surges and is an important mechanism in debris flow behavior.