Articles | Volume 10, issue 2
https://doi.org/10.5194/esurf-10-247-2022
https://doi.org/10.5194/esurf-10-247-2022
Research article
 | 
21 Mar 2022
Research article |  | 21 Mar 2022

Morphodynamic styles: characterising the behaviour of gravel-bed rivers using a novel, quantitative index

William H. Booker and Brett C. Eaton

Related authors

Stabilising large grains in self-forming steep channels
William H. Booker and Brett C. Eaton
Earth Surf. Dynam., 8, 51–67, https://doi.org/10.5194/esurf-8-51-2020,https://doi.org/10.5194/esurf-8-51-2020, 2020
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024,https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024,https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Role of the forcing sources in morphodynamic modelling of an embayed beach
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024,https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024,https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024,https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary

Cited articles

Abrahams, A. D., Li, G., and Atkinson, J. F.: Step-Pool Streams: Adjustment to Maximum Flow Resistance, Water Resour. Res., 31, 2593–2602, https://doi.org/10.1029/95WR01957, 1995. a
Adams, D. L. and Zampiron, A.: Short Communication: Multiscalar Roughness Length Decomposition in Fluvial Systems Using a Transform-Roughness Correlation (TRC) Approach, Earth Surf. Dynam., 8, 1039–1051, https://doi.org/10.5194/esurf-8-1039-2020, 2020. a, b
Ancey, C.: Bedload Transport: A Walk between Randomness and Determinism. Part 1. The State of the Art, J. Hydraul. Res., 58, 1–17, https://doi.org/10.1080/00221686.2019.1702594, 2020. a
Ancey, C., Böhm, T., Jodeau, M., and Frey, P.: Statistical Description of Sediment Transport Experiments, Phys. Rev. E, 74, 011302, https://doi.org/10.1103/PhysRevE.74.011302, 2006. a, b
Ashmore, P. E.: How Do Gravel-Bed Rivers Braid?, Can. J. Earth Sci., 28, 326–341, https://doi.org/10.1139/e91-030, 1991. a
Download
Short summary
Channel behaviour is a qualitative aspect of river research that needs development to produce a framework of analysis between and within types of channels. We seek to produce a quantitative metric that can capture how a channel changes using a pair of experiments and collecting easy to obtain data. We demonstrate that this new technique is capable of discerning between river types and may provide a new tool with which we may describe channel behaviour.