Articles | Volume 8, issue 1
https://doi.org/10.5194/esurf-8-51-2020
https://doi.org/10.5194/esurf-8-51-2020
Research article
 | 
28 Jan 2020
Research article |  | 28 Jan 2020

Stabilising large grains in self-forming steep channels

William H. Booker and Brett C. Eaton

Related authors

Morphodynamic styles: characterising the behaviour of gravel-bed rivers using a novel, quantitative index
William H. Booker and Brett C. Eaton
Earth Surf. Dynam., 10, 247–260, https://doi.org/10.5194/esurf-10-247-2022,https://doi.org/10.5194/esurf-10-247-2022, 2022
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Linear-stability analysis of plane beds under flows with suspended loads
Koji Ohata, Hajime Naruse, and Norihiro Izumi
Earth Surf. Dynam., 11, 961–977, https://doi.org/10.5194/esurf-11-961-2023,https://doi.org/10.5194/esurf-11-961-2023, 2023
Short summary
Estimating surface water availability in high mountain rock slopes using a numerical energy balance model
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023,https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Sediment source and sink identification using Sentinel-2 and a small network of turbidimeters on the Vjosa River
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
Earth Surf. Dynam., 11, 881–897, https://doi.org/10.5194/esurf-11-881-2023,https://doi.org/10.5194/esurf-11-881-2023, 2023
Short summary
Spatiotemporal bedload transport patterns over two-dimensional bedforms
Kate C. P. Leary, Leah Tevis, and Mark Schmeeckle
Earth Surf. Dynam., 11, 835–847, https://doi.org/10.5194/esurf-11-835-2023,https://doi.org/10.5194/esurf-11-835-2023, 2023
Short summary
Ice-buttressing-controlled rock slope failure on a cirque headwall, Lake District, UK
Paul A. Carling, John D. Jansen, Teng Su, Jane Lund Andersen, and Mads Faurschou Knudsen
Earth Surf. Dynam., 11, 817–833, https://doi.org/10.5194/esurf-11-817-2023,https://doi.org/10.5194/esurf-11-817-2023, 2023
Short summary

Cited articles

Ancey, C., Bigillon, F., Frey, P., Lanier, J., and Ducret, R.: Saltating Motion of a Bead in a Rapid Water Stream, Phys. Rev. E, 66, 036306, https://doi.org/10.1103/PhysRevE.66.036306, 2002. a
Andrews, E. D.: Entrainment of Gravel from Naturally Sorted Riverbed Material, Geol. Soc. Am. Bull., 94, 1225–1231, https://doi.org/10.1130/0016-7606(1983)94<1225:EOGFNS>2.0.CO;2, 1983. a, b
Andrews, E. D. and Parker, G.: Formation of a Coarse Surface Layer as the Response to Gravel Mobility, in: Sediment Transport in Gravel-Bed Rivers, edited by: Thorne, C., Bathurst, J., and Hey, R., Wiley, New York, 269–300, 1987. a
Ashmore, P. E.: Laboratory Modelling of Gravel Braided Stream Morphology, Earth Surf. Proc. Land., 7, 201–225, https://doi.org/10.1002/esp.3290070301, 1982. a
Ashmore, P. E.: How Do Gravel-Bed Rivers Braid?, Can. J. Earth Sci., 28, 326–341, https://doi.org/10.1139/e91-030, 1991. a, b
Download
Short summary
Using experiments, we found that the form and behaviour of a river depends on its ability to move the larger of its constituents. The manner in which all particles move depends upon the rate and calibre of the supplied material, as well as the rate of supplied water. This goes against the prevailing theory of a single important and representative grain size under depositing conditions, and these results may alter how we interpret river deposits to explain their formation.