Articles | Volume 10, issue 2
https://doi.org/10.5194/esurf-10-349-2022
https://doi.org/10.5194/esurf-10-349-2022
Research article
 | 
27 Apr 2022
Research article |  | 27 Apr 2022

Convolutional neural networks for image-based sediment detection applied to a large terrestrial and airborne dataset

Xingyu Chen, Marwan A. Hassan, and Xudong Fu

Related authors

Coupling between downstream variations of channel width and local pool–riffle bed topography
Shawn M. Chartrand, A. Mark Jellinek, Marwan A. Hassan, and Carles Ferrer-Boix
Earth Surf. Dynam., 11, 1–20, https://doi.org/10.5194/esurf-11-1-2023,https://doi.org/10.5194/esurf-11-1-2023, 2023
Short summary
A combined approach of experimental and numerical modeling for 3D hydraulic features of a step-pool unit
Chendi Zhang, Yuncheng Xu, Marwan A. Hassan, Mengzhen Xu, and Pukang He
Earth Surf. Dynam., 10, 1253–1272, https://doi.org/10.5194/esurf-10-1253-2022,https://doi.org/10.5194/esurf-10-1253-2022, 2022
Short summary
Probabilistic description of bedload fluxes from the aggregate dynamics of individual grains
J. Kevin Pierce, Marwan A. Hassan, and Rui M. L. Ferreira
Earth Surf. Dynam., 10, 817–832, https://doi.org/10.5194/esurf-10-817-2022,https://doi.org/10.5194/esurf-10-817-2022, 2022
Short summary
Effect of stress history on sediment transport and channel adjustment in graded gravel-bed rivers
Chenge An, Marwan A. Hassan, Carles Ferrer-Boix, and Xudong Fu
Earth Surf. Dynam., 9, 333–350, https://doi.org/10.5194/esurf-9-333-2021,https://doi.org/10.5194/esurf-9-333-2021, 2021
Short summary
Characterization of morphological units in a small, forested stream using close-range remotely piloted aircraft imagery
Carina Helm, Marwan A. Hassan, and David Reid
Earth Surf. Dynam., 8, 913–929, https://doi.org/10.5194/esurf-8-913-2020,https://doi.org/10.5194/esurf-8-913-2020, 2020
Short summary

Related subject area

Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024,https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Decadal-scale decay of landslide-derived fluvial suspended sediment after Typhoon Morakot
Gregory A. Ruetenik, Ken L. Ferrier, and Odin Marc
Earth Surf. Dynam., 12, 863–881, https://doi.org/10.5194/esurf-12-863-2024,https://doi.org/10.5194/esurf-12-863-2024, 2024
Short summary
Role of the forcing sources in morphodynamic modelling of an embayed beach
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024,https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
A machine learning approach to the geomorphometric detection of ribbed moraines in Norway
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024,https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers
Eric Petersen, Regine Hock, and Michael G. Loso
Earth Surf. Dynam., 12, 727–745, https://doi.org/10.5194/esurf-12-727-2024,https://doi.org/10.5194/esurf-12-727-2024, 2024
Short summary

Cited articles

Adams, J.: Gravel Size Analysis from Photographs, J. Hydr. Eng. Div.-ASCE, 105, 1247–1255, https://doi.org/10.1061/JYCEAJ.0005283, 1979. 
An, C., Hassan, M. A., Ferrer-Boix, C., and Fu, X.: Effect of stress history on sediment transport and channel adjustment in graded gravel-bed rivers, Earth Surf. Dynam., 9, 333–350, https://doi.org/10.5194/esurf-9-333-2021, 2021. 
Brayshaw, D.: Bankfull and effective discharge in small mountain streams of British Columbia, The University of British Columbia, Vancouver, Canada, 70–71, https://doi.org/10.14288/1.0072555, 2012. 
Bunte, K. and Abt, S. R.: Sampling frame for Improving pebble Count Accuracy in Coarse Gravel-bed streams, J. Am. Water Resour., 37, 1001–1014, https://doi.org/10.1111/j.1752-1688.2001.tb05528.x, 2001. 
Buscombe, D.: SediNet: a configurable deep learning model for mixed qualitative and quantitative optical granulometry, Earth Surf. Proc. Land., 45, 638–651, https://doi.org/10.1002/esp.4760, 2020. 
Download
Short summary
We compiled a large image dataset containing more than 125 000 sediments and developed a model (GrainID) based on convolutional neural networks to measure individual grain size from images. The model was calibrated on flume and natural stream images covering a wide range of fluvial environments. The model showed high performance compared with other methods. Our model showed great potential for grain size measurements from a small patch of sediment in a flume to a watershed-scale drone survey.